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Purpose of assimilation : reconstruct as accurately as possible the state of 

the atmospheric or oceanic flow, using all available appropriate information. 

The latter essentially consists of

� The observations proper, which vary in nature, resolution and 

accuracy, and are distributed more or less regularly in space and time.

� The physical laws governing the evolution of the flow, available in 

practice in the form of a discretized, and necessarily approximate, 

numerical model.

� ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes. 

Although they basically are necessary consequences of the physical laws which govern the 

flow, these properties can usefully be explicitly introduced in the assimilation process.
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Validation must therefore aim primarily at determining, as far as 

possible, the accuracy with which assimilation reconstructs the 

state of the flow. In particular, if one wants to compare two different 

assimilation procedures, the ultimate test lies in the comparison of 

the accuracies with which those two procedures reconstruct the 

flow.

Now, the state of the flow is not perfectly known, and the output of 

an assimilation process is precisely meant to be the best possible 

estimate of that state. So there is a circular argument there.
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But there is another aspect to evaluation of an assimilation process. 

Does the process make the best possible use of the available 

information ? This is totally distinct from the accuracy with which the 

process reconstructs the state of the flow. We will distinguish 

numerical accuracy from optimality (the property that the process 

makes the best possible use of the available information).
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Assimilation aims at minimizing statistical error on estimated 

fields (reasonable since uncertainty on data can be described 

only statistically). This means that objective validation can be 

only statistical. Validation on individual situations can be 

misleading.
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Example

xb =  x + ζb (‘background’)

y =  x + ε (‘observation’)

where unknown x is scalar, and errors ζb and ε are centred (E(ζb) = E(ε) = 0), have respective 

variances E[(ζb)2] = pb and E(ε2) = r, and are uncorrelated, E(εζb) = 0. Least-variance linear 

estimate of x from xb and y

xa =  (rxb + pby) / (r + pb)

One can expect the squared differences (xa-xb)2 and (xa-y)2 to be smaller than pb and r

respectively.

However, if errors ζb and ε are gaussian, and if r«pb, the probability is 0.32 that (xa-xb)2 ,> pb, 

and 0.14 if r=pb/2. 
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Validation against observations used in the assimilation  ?

That cannot do, since best fit to observation z will be provided by best 

estimate of z from data. That best estimate is z itself.

It can be shown that fit of assimilation to any observation z can be 

made arbitrarily close by assuming that the corresponding observation 

error is small enough.

In a perfectly accurate assimilation system, the difference between an 

observation and the corresponding estimated value will statistically be 

equal to the corresponding observation error. If fit of analysis to 

observation is different from corresponding observation error 

(assuming the latter is exactly known), that will be a sign of imperfect 

accuracy.
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Consequence. Objective validation of assimilation can be made only 
against observations that have not been used in the assimilation. If 
validation is made on forecasts, no problem (such ‘external’
observations will exist). But if validation is made on analysed fields, 
this may mean that some data will have to be kept for validation (and 
therefore not used in the assimilation), thus possibly decreasing the 
accuracy of the assimilation. Validation may be possible only on sub-
optimal assimilation procedures.
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Validation observation must be unbiased, and affected with errors that 
are independent of errors affecting data used in the assimilation

xb =  x + ζb

y =  x + ε

where errors ζb and ε now have same variance r.

xa =  (xb + y) / 2

Validating observation

y’ =  x + ε’

where ε’ has expectation 0, variance r, but is correlated with ε, E(εε’) = cr (and 
uncorrelated with ζb). Best fit to analysis will be provided by linear least-
variance estimate of y’ from xb and y. That estimate is

x’a =  [(1-c)xb + (1+c)y)] / 2

different from xa.
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Objective validation of assimilation can only be statistical, and must be 
made against observations (or data) that are unbiased, and are affected by 
errors that are statistically independent of the errors affecting the data 
used in the assimilation.

Amplitude of forecast error, if estimated against observations that are really 
independent of observations used in assimilation, is an objective measure of 
accuracy of assimilation.

But neither the unbiasedness nor the ‘independence’ of the verifying 
observations can be objectively verified, at least within the world of data and 
assimilation. External knowledge must be used.
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Remark. Accuracy of verifying observations is secondary.

Analysed value 

xa = x + ζa

Verifying observation

z =  x + ζ

If z is independent of data used for producing xa,  then E(ζaζ) = 0, and 

E[(z-xa)2] =  b2 + E(ζ2) + E(ζa2)

where b is statistical bias in xa (b = E(xa-z)). Best fit of xa to z will always be 

obtained by least-variance estimate (i. e., b=0 and E(ζa2) minimum).

Variance E(ζa2) of assimilation error will be known only if variance E(ζ2) is 
known.
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Best Linear Unbiased Estimate

State vector x, belonging to state space S (dimS = n), to be estimated.

Available data in the form of

� A ‘background’ estimate, belonging to state space, with dimension n

xb =  x + ζb

� An additional set of data (e. g. observations), belonging to observation 

space, with dimension p

y =  Hx + ε

H is known linear observation operator.
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Best Linear Unbiased Estimate (continuation 2)

Assume E(ζζζζb) = 0, E(εεεε) = 0

Set d ≡ y - Hxb (innovation vector)

xa = xb - E(ζζζζbdT) [E(ddT)]-1 (y - Hxb)

Pa =E(ζζζζbζζζζbT) - E(ζζζζbdT) [E(ddT)]-1 E(dζζζζbT) 

Assume E(ζζζζbεεεεT) = 0 (not restrictive). Set E(ζζζζbζζζζbT) = Pb (also often denoted B), E(εεεεεεεεT) = R

xa = xb + Pb HT [HPbHT + R]-1 (y - Hxb)

Pa = Pb - Pb HT [HPbHT + R]-1 HPb

xa is the Best Linear Unbiased Estimate (BLUE) of x from xb and y.

If probability distributions are globally gaussian, BLUE achieves bayesian estimation, in the sense 
that P(x | xb, y) = N [xa, Pa].

Determination of the BLUE requires (at least apparently) the a priori specification of the expectation 
and covariance matrix, i. e. the statistical moments of orders 1 and 2,  of the errors. The expectation 
is required for unbiasing the data in the first place. 
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Questions

� Is it possible to objectively evaluate the quality of an 
assimilation system ?

� Is it possible to objectively evaluate the first- and second-order 
statistical moments of the data errors, whose specification is 
required for determining the BLUE ?

� Is it possible to objectively determine whether an assimilation 
system is optimal ?

� More generally, how to make the best of an assimilation 
system ?
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xb =  x + ζb

y =  Hx + ε   

The only combination of the data that is a function of only the error is the 
innovation vector

d =  y - Hxb  =  ε - Hζb

Innovation is the only objective source of information on errors. Now innovation 

is  a combination of background and observation errors, while determination 

of the BLUE requires explicit knowledge of the statistics of both observation 

and background errors.

xa = xb + Pb HT [HPbHT + R]-1 (y - Hxb)

Innovation alone will never be sufficient to determine the required statistics.
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With hypotheses made above

E(d) = 0      ; E(ddT) = HPbHT + R

Possible to check statistical consistency between a priori assumed and 
a posteriori observed statistics of innovation.

Consistency, which will be considered now, is a different quality than 
either accuracy or optimality.

Consider assimilation scheme of the form

xa = xb + K(y - Hxb) (1)

with any (i. e. not necessarily optimal) gain matrix K.

(1) ⇔⇔⇔⇔ if data are perfect, then so is the estimate xa.
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Data-minus-Analysis (DmA) difference

For given gain matrix K, one-to-one correspondance d ⇔⇔⇔⇔ δ

It is exactly equivalent to compute statistics on either the innovation d or 

on the DmA difference δ.

δ ≡
x b − xa

y − Hxa

 

 
  

 

 
  =

−Kd

(Ip − HK )d

 

 
  

 

 
  
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For perfectly consistent system (i. e., system that uses the exact error 
statistics):

E(d) = 0 ( ⇔⇔⇔⇔ E(δδδδ) = 0)

Any systematic bias in either the innovation vector or the DmA difference 
is the signature of an inappropriately taken into account bias in either 
the background or the observation (or both).

E[(xb-xa)(xb-xa)T] = Pb - Pa

E[(y - Hxa)(y - Hxa)T] = R - HPaHT

A perfectly consistent analysis statistically fits the data to within their own 
accuracy.

If new data are added to (removed from) an optimal analysis system, DmA
difference must increase (decrease).
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Assume inconsistency has been found between a priori assumed and a 
posteriori observed statistics of innovation or DmA difference.

- What can be done ?

or, equivalently

- Which bounds does the knowledge of the statistics of innovation put 
on the error statistics whose knowledge is required by the BLUE ?
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Data assumed to consist of a vector z, belonging to data space D (dimD = 

m), in the form

z = Γx + ζ

where Γ is a known (mxn)-matrix, and ζ an unknown ‘error’

For instance

which corresponds to

Γ =
In

H

 

 
 

 

 
 ζ =

ζ b

ε

 

 
  

 

 
  

z =
x b = x +ζ b

y = Hx + ε

 

 
  

 

 
  
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Look for estimated state vector xa of the form 

xa = α + Az

subject to

� invariance in change of origin in state space ⇒ AΓ = Im

� quadratic estimation error E[(xa
i - xi)

2]  minimum for any component xi.
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Solution

xa = (Γ T S-1Γ)-1 Γ T S-1 [z − µµµµ]

Pa ≡ E[(xa - x) (xa - x )T] = (Γ T S-1Γ)-1

where      µµµµ ≡ �ζζζζ) , S ≡ E(ζζζζ’ζζζζ’T) , ζζζζ’ ≡  ζζζζ − µµµµ

Requires (at least apparently) a priori explicit knowledge of Ε(ζζζζ) and E(ζζζζ’ζζζζ’T)

Unambiguously defined iff rankΓ = n. Determinacy condition. Requires m ≥ n.

We shall set m = n + p.

Invariant in any invertible linear change of coordinates, either in data or state space.

In case ζζζζ is gaussian, ζζζζ = N [µµµµ, S], BLUE achieves bayesian estimation in the sense 
that P(x | z) = N [xa, Pa]
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If determinacy condition is verified, it is always possible to decompose data vector z into

xb =  x + ζζζζb

y =  Hx + εεεε   

with     E(ζζζζb) = 0   ; E(εεεε) = 0   ; E(εεεεζζζζbT) = 0 

xa is the same estimate (BLUE) as before, viz.,

xa = xb + Pa HT R-1 (y - Hxb)

[Pa]-1 = [Pb]-1 + HT R-1H

xa = xb + Pb HT [HPbHT + R]-1 (y - Hxb)

Pa = Pb - Pb HT [HPbHT + R]-1 HPb
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Variational form.

xa minimizes following scalar objective function, defined on state space S

J(ξξξξ)  ≡ (1/2) [Γξξξξ - (z-µµµµ)]T S-1 [Γξξξξ - (z-µµµµ)]

(Mahalanobis S-metric)
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J(ξξξξ)  ≡ (1/2) [Γξξξξ - (z-µµµµ)]T S-1 [Γξξξξ - (z-µµµµ)]

z-µµµµ

ΓΓΓΓxa

ΓΓΓΓ(S)
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Minimizing J(ξξξξ) amounts to

� unbias z

� project orthogonally onto space Γ(S) according to Mahalanobis S-metric

� take inverse through Γ (inverse unambiguously defined through determinacy 
condition)
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Many assimilation methods

- Optimal Interpolation

- 3DVar, either primal or dual

- Kalman Filter, either in its simple or Extended form

- Kalman Smoother

- 4DVar, either in its strong- or weak-constraint form, or in its primal or dual form

are particular cases of that general scheme.

Only exceptions (so far)

- Ensemble Kalman Filter (which is linear however in its ‘updating’ phase)

- Particle Filters
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Decompose data space D into image space Γ(S) (index 1) and its S-orthogonal space ⊥Γ(S) (index 2)

ΓΓΓΓ1  invertible

Assume

Then

xa = ΓΓΓΓ1 
-1 [z1 − µµµµ1]

Γ =
Γ1

0

 

 
 

 

 
 

µ =
µ1

µ2

 

 
 

 

 
 

z =
z1 = Γ1x + ζ1

z2 = ζ 2

 

 
 

 

 
 
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xa = ΓΓΓΓ1 
-1 [z1 − µµµµ1] 

The probability distribution of the error 

xa - x = ΓΓΓΓ1 
-1 [ζζζζ1 − µµµµ1]

depends on the probability distribution of ζζζζ1.

On the other hand, the probability distribution of

δδδδ = (z-µµµµ) - Γxa =

depends only on the probability distribution of ζζζζ2.

0

ζ 2 − µ2

 

 
 

 

 
 
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DmA difference, i. e. (z-µµµµ) - Γxa, is in effect ‘rejected’ by the assimilation. Its 

expectation and covariance are irrelevant for the assimilation.

Consequence. Any assimilation scheme (i. e., a priori subtracted bias and gain 

matrix K) is compatible with any observed statistics of either DmA or 

innovation. Not only is not consistency between a priori assumed and a 

posteriori observed statistics of innovation (or DmA) sufficient for optimality 

of an assimilation scheme, it is not even necessary.
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Example 

z1 = x + ζ1

z2 = x + ζ2

Errors ζ1 and ζ2 assumed to be centred (E(ζ1) = E(ζ2) = 0),  to have same variance s and to be mutually 
uncorrelated. Then

xa = (1/2) (z1 + z2)

with expected quadratic estimation error

E[(xa-x)2] = s/2

Innovation is difference z1 - z2. With above hypotheses, one expects to observe

E(z1 - z2) = 0 ; E[(z1 - z2)
2] = 2s

Assume one observes

E(z1 - z2) = b ; E[(z1 - z2)
2] = b2 + 2γ

Inconsistency if b≠0 and/or γ≠s
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Inconsistency can always be resolved by assuming that

E(ζ1) = -E(ζ2) = -b/2

E(ζ’1
2) = E(ζ’2

2) = (s+γ)/2

E(ζ’1ζ’2) = (s-γ)/2

This alters neither the BLUE xa, nor the corresponding quadratic estimation error E[(xa-x)2].



33

Explanation. It is not necessary to know explicitly the complete expectation µ and 
covariance matrix S in order to perform the assimilation. It is necessary to 
know the projection of µµµµ and S onto the subspace Γ(S). As for the subspace that 
is S-orthogonal to Γ(S), it suffices to know what it is, but it is not necessary to 
know the projection of µµµµ and S onto it. A number of degrees of freedom are 
therefore useless for the assimilation. The parameters determined by the 
statistics of d are equal in number to those useless degrees of freedom, to which 
any inconsistency between a priori and a posteriori statistics of the innovation 
can always mathematically be attributed.

However it may be that resolving the inconsistency in that way requires conditions 
that are (independently) known to be very unlikely, if not simply impossible. 
For instance, in the above example, consistency when γ≠s requires  the errors 
ζ1 and ζ2 to be mutually correlated, which may be known to be very unlikely.
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J(ξξξξ)  ≡ (1/2) [Γξξξξ - (z-µµµµ)]T S-1 [Γξξξξ - (z-µµµµ)]

z-µµµµ

ΓΓΓΓxa

ΓΓΓΓ(S)
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That result, which is purely mathematical, means that the specification of the error statistics 
required by the assimilation must always be based, in the last resort, on external 
hypotheses, i. e. on hypotheses that cannot be validated on the basis of the innovation 
alone. Now, such knowledge always exists.

Problem. Identify hypotheses 

� That will not be questioned (errors on observation perfomed a long distance apart by 
radiosondes made by different manufacturers are uncorrelated)

� That sound reasonable, but may be questioned (observation and background errors 
are uncorrelated)

� That are undoubtedly questionable (model errors are negligible)

Ideally, define a minimum set of hypotheses such that all remaining undetermined error 
statistics can be objectively determined from observed statistics of innovation.
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Objective function

J(ξξξξ)  ≡ (1/2) [Γξξξξ - z]T S-1 [Γξξξξ - z]

Jmin ≡ J(xa)  = (1/2) [Γxa - z]T S-1 [Γxa - z]

= (1/2) dT [E(ddT)]-1 d

⇒ E(Jmin)  =  p/2 (p = dimy = dimd)

If p is large, a few realizations are sufficient for determining E(Jmin)

Often called χ2 criterion.

Remark. If in addition errors are gaussian Var(Jmin)  =  p/2
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Results for ECMWF (January 2003, n = 8 106)

- Operations (p = 1.4 106, has almost doubled since then)

2Jmin /p = 0.40 - 0.45

Innovation is significantly smaller than implied by Pb and R (a residual bias in d would 
make Jmin too large).

- Assimilation without satellite observations (p = 2 - 3 105)

2Jmin /p = 1. - 1.05

Similar results obtained at other NWP centres (C. Fischer, W. Sadiki with Aladin model, T. Payne 
at Meteorological Office, UK).

Probable explanation: error variance of satellite observations overestimated in order to compensate 
for ignored spatial correlation.
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Informative content

Objective function

J(ξξξξ)  = Σk  Jk(ξξξξ)

where

Jk(ξξξξ)  ≡ (1/2) (Hkξξξξ - yk)
T Sk

-1 (Hkξξξξ - yk)

with dimyk = mk

Accuracy of analysis

Pa = (Γ T S-1Γ)-1

[Pa]-1 = Σk Hk
T Sk

-1 Hk

1 = (1/n) Σk tr(Pa Hk
T Sk

-1 Hk)

         =   (1/n) Σk tr(Sk
–1/2 Hk Pa Hk

T Sk
–1/2)
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Informative content (continuation 1)

(1/n) Σk tr(Sk
–1/2 Hk Pa Hk

T Sk
–1/2) = 1

I(yk) ≡ (1/n) tr(Sk
–1/2 Hk Pa Hk

T Sk
–1/2) is a measure of the relative contribution of subset of data yk to 

overall accuracy of assimilation. Invariant in linear change of coordinates in data space ⇒ valid 
for any subset of data.

In particular

I(xb) = (1/n) tr[Pa (Pb)-1]  = 1 - (1/n) tr(KH)

I(y) = (1/n) tr(KH)

Rodgers, 2000, calls those quantities Degrees of Freedom for Signal, or for Noise, depending on whether considered 
subset belongs to ‘observations’ or ‘background’.



Informative content of subsets of observations (Arpège Assimilation System, Météo-France)

Chapnik et al., 2006, QJRMS, 132, 543-565
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QuickTime™ et un
décompresseur TIFF (LZW)

sont requis pour visionner cette image.

Informative content per individual (scalar) observation (courtesy B. 

Chapnik)
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Objective function

J(ξξξξ)  = Σk  Jk(ξξξξ)

where

Jk(ξξξξ)  ≡ (1/2) (Hkξξξξ - yk)
T Sk

-1 (Hkξξξξ - yk)

with dimyk = mk

For a perfectly consistent system

E[Jk(x
a)]  = (1/2) [mk - tr(Sk

–1/2 Hk Pa Hk
T Sk

–1/2)]

(in particular, E(Jmin)  =  p/2)

For same vector dimension mk, more informative data subsets lead at the minimum to smaller terms in 
the objective function.
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Equality

E[Jk(x
a)]  = (1/2) [mk - tr(Sk

–1/2 Hk Pa Hk
T Sk

–1/2)] (1)

can be objectively checked.

Chapnik et al. (2004, 2005). Multiply each observation error covariance matrix Sk by a coefficient αk
such that (1) is verified simultaneously for all observation types.

System of equations fot the αk‘s solved iteratively.
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Chapnik et al., 2006, 
QJRMS, 132,
543-565
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Informative content (continuation 2)

I(yk) ≡ (1/n) tr(Sk
–1/2 Hk Pa Hk

T Sk
–1/2)

Two subsets of data z1 and z2

If errors affecting z1 and z2 are uncorrelated, then I(z1 ∪ z2) =  I(z1) + I(z2)

If errors are correlated I(z1 ∪ z2)≠ I(z1) + I(z2)
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Informative content (continuation 3)

Example 1

z1 = x + ζ1

z2 = x + ζ2

Errors ζ1 and ζ2 assumed to centred, to have same variance and correlation coefficient c.

I(z1)  = I(z2) = (1/2) (1 + c)

Example 2

State vector x evolving in time according to

x2 = α x1

Observations are performed at times 1 and 2. Observation errors are assumed centred, uncorrelated and 
with same variance. Information contents are then in ratio (1/α , α). For an unstable system (α >1), 
later observation contains more information (and the opposite for  a stable system).
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Informative content (continuation 4)

Subset u1 of analyzed fields, dimu1 = n1. Define relative contribution of subset yk of data to 
accuracy of u1?

u2 : component of x orthogonal to u1 with respect to Mahalanobis norm associated with Pa 

(analysis errors on u1 and u2 are uncorrelated).

x = (u1
T, u2

T)T. In basis (u1, u2)

P
a
 =

Pa
1 0

0 Pa
2

 

 
  

 

 
  
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Informative content (continuation 5)

Observation operator Hk decomposes into

Hk =  (Hk1, Hk2)

and expression of estimation error covariance matrix into

[Pa
1]

-1 = Σk Hk1
T Sk

-1 Hk1

[Pa
2]

-1 = Σk Hk2
T Sk

-1 Hk2

Same development as before shows that the quantity

(1/n1) tr(Sk
–1/2 Hk1 Pa

1 Hk1
T Sk

–1/2)

is a measure of the relative contribution of subset yk of data to analysis of subset u1 of state vector.

But can it be computed in practice for large dimension systems (requires the explicit decomposition 

x = (u1
T, u2

T)T) ?
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Other possible diagnostics (Desroziers et al., 2006, submitted to QJRMS)

For a consistent system

E[H(xa-xb)(y-Hxb) T]  = E[H(xa-xb)dT]  = HPbHT

E[(y-Hxa)(y-Hxb)T]  = E[(y-Hxa)dT]  = R
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Optimality

Equation

xa = xb - E(ζζζζbdT) [E(ddT)]-1 (y - Hxb)

means that estimation error x -xa is uncorrelated with innovation y - Hxb (if it was not, it 
would be possible to improve on xa by statistical linear estimation).

Independent unbiased observation

v =  Cx + γγγγ

Fit to analysis v - Cxa =  C(x - xa) + γγγγ

E[(v - Cxa) dT] = CE[(x - xa) dT] + E(γγγγ dT)

First term is 0 if analysis is optimal, second is 0 if observation v is independent from 
previous data.

Daley (1992)
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Conclusions

� Absolute evaluation of analysis schemes, and comparison between different schemes

Can be evaluated only against independent unbiased data (independence and unbiasedness 
cannot be objectively checked). Fundamental, but not much to say.

� Determination of required statistics

Impossible to achieve in  a purely objective way. Will always require physical knowledge, 
educated guess, interaction with instrumentalists and modelers, and the like.

Inconsistencies in specification of statistics can be objectively diagnosed, and can help in 
improving assimilation.

For given error statistics, possible to quantify relative contribution of each subset of data to
analysis of each subset of state vector.

(and also Generalized Cross-Validation, Adaptive Filtering)

� Optimality of analysis schemes

Optimality in the sense of least error variance can be objectively checked against independent 
unbiased data. 
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Sequential assimilation cannot be optimal if errors are correlated in time.

z1 = x + ζ1

z2 = x + ζ2

E(ζ1) = E(ζ2) = 0 ;  E(ζ1
2) = E(ζ2

2) = s ; E(ζ1ζ2) = 0

BLUE of x from z1 and z2 gives equal weights to z1 and z2.

Additional observation then becomes available

z3 = x + ζ3

E(ζ3) = 0  ;    E(ζ3
2) = s ;    E(ζ1ζ3) = cs ;    E(ζ2ζ3) = 0

BLUE of x from (z1, z2, z3) has weights in the proportion (1, 1+c, 1)
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Time-correlated Errors (continuation 1)

Example of time-correlated model errors

Evolution equation

` xk+1 = xk + ηk E(ηk
2) = q

Observations

yk = xk + εk , k = 0, 1, 2 E(εk
2) = r, errors uncorrelated in time

Sequential assimilation. Weights given to y0 and y1 in analysis at time 1 are in the 
ratio r/(r+q). That ratio will be conserved in sequential assimilation. All right if model 
errors are uncorrelated in time.

Assume E(η0η1) = cq

Weights given to y0 and y1 in estimation of x2 are in the ratio

ρ =
r − qc

r + q + qc
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Time-correlated Errors (continuation 2)

Moral. If data errors are correlated in time, it is not possible to discard observations as they 
are used while preserving optimality of the estimation process. In particular, if model error 
is correlated in time, all observations are liable to be reweighted  as assimilation proceeds.

Variational assimilation can take time-correlated errors into account.

Example of time-correlated observation errors. Global covariance matrix

R = (Rkk’ = E(εkεk’
T))

Objective function

ξ0 ∈ S   → 

J(ξ0) =  (1/2) (x0
b - ξ0)

T [P0
b]-1 (x0

b - ξ0) + (1/2) Σkk’[yk - Hkξk]
T [R -1]kk’ [yk’ - Hk’ξk’]

where [R -1]kk’ is the kk’-sub-block of global inverse matrix R -1.

Similar approach for time-correlated model error.
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Time-correlated Errors (continuation 3)

Time correlation of observational error has been introduced by ECMWF (Järvinen et al., 
1999) in variational assimilation of high-frequency surface pressure observations 
(correlation originates in that case in representativeness error).

Identification and quantification of temporal correlation of errors, especially model errors ?


