
Modelos adjuntos

Olivier Talagrand

Curso Intensivo en Asimilacion de Datos

Buenos Aires, Argentina

5 Noviembre 2008

2

Variational Assimilation (4DVar) minimizes a scalar objective function (aka cost-

function) which measures the misfit between ‘model and data’ over time interval [0, K].

E. g.

ξ0 ∈ S →

J(ξ0) = (1/2) (x0
b - ξ0)

T [P0
b]-1 (x0

b - ξ0) + (1/2) Σk[yk - Hk(ξk)]
T Rk

-1 [yk - Hk(ξk)]

subject to model equation ξk+1 = Mk(ξk) , k = 0, …, K-1

ξ0 (the model state at time 0 in the present example) is the control variable of the

minimization. In meteorological applications, it can reach dimension n ≈ 106 -107.

We will denote the control variable ξ0 = u.

3

J(ξ0) = (1/2) (x0
b - ξ0)

T [P0
b]-1 (x0

b - ξ0) + (1/2) Σk[yk - Hk(ξk)]
T Rk

-1 [yk - Hk(ξk)]

Question. How to numerically perform the minimization ?

‘Exploration’ of control space, by various methods (e. g., simulated annealing)

? Cost is prohibitive in large dimension.

The only way so far seems to be through iterative descent method

u(m+1) = u(m) + αm Dm

where u(m) is m-th approximation of minimizing control variable, Dm is a

descent direction in control space, and αm an appropriate scalar coefficient.

4

Numerous such descent methods exist (many codes are available on software libraries)

- Steepest descent (where descent direction Dm is local gradient of objective function).
Usually very inefficient.

- Conjugate gradient (particularly appropriate for quadratic functions)

- Newton method (very efficient as concerns the number of required iterations, but each
iteration is very costly)

- Quasi-Newton methods

All these methods determine the descent direction from the local gradient

∇u J ≡ (∂J/∂ui)

of J with respect to u and (except for steepest descent) from additional information, in
particular gradients computed at previous iterations.

5

Question. How to numerically determine the required gradient ?

- Analytical expressions ? Forget it.

- Explicit perturbations, producing finite-difference approximation of partial
derivatives ∂J/∂ui?

∂J/∂ui ≈ [J(u + δui) - J(u)] / δui i = 1, …, n

That would require as many explicit computations of the objective function J
as there are components in u. Practically impossible.

6

Adjoint Method. Elementary principle

Code

Input variables u1, u2, …, un

*

*

*
a = b x c

*

*

*
J = x1

2 + x2
2 + x3

2

Purpose. Determine partial derivatives of J with respect to u1, u2, …, un

7

Adjoint Method. Elementary principle (2)

Input variables u1, u2, …, un

*

*

*

a = b x c

*

*

*

J = x1
2 + x2

2 + x3
2

Last instruction

∂J/∂x1 = 2x1, ∂J/∂x2 = 2x2 , ∂J/∂x3 = 2x3

And then proceed backwards

8

Adjoint Method. Elementary principle (3)

Operation a = b x c

Input b, c Output a but also b, c

For clarity, we write

a = b x c

b’ = b

c’ = c

∂J/∂a, ∂J/∂b’, ∂J/∂c’ available. We want to determine ∂J/∂b, ∂J/∂c

Chain rule

∂J/∂b = (∂J/∂a)(∂a/∂b) + (∂J/∂b’)(∂b’/∂b) + (∂J/∂c’)(∂c’/∂b)

c 1 0

∂J/∂b = (∂J/∂a) c + ∂J/∂b’

Similarly

∂J/∂c = (∂J/∂a) b + ∂J/∂c’

9

Adjoint Method. Elementary principle (4)

Operation count. At most 4 times operation count of direct computation u1,
u2, …, un → J (in practice of meteorological models, about 2 times). Ratio
fundamentally independent of dimension n of input.

BUT it is necessary to keep in memory (or else to recompute in the course of
the reverse computation) all quantities such as b and c in above example (more
precisely, all quantities which appear in nonlinear operations in direct
computation).

10

QuickTime™ et un
décompresseur TIFF (LZW)

sont requis pour visionner cette image.

Errico and Vukicevic (NCAR, 1991)

11

QuickTime™ et un
décompresseur TIFF (LZW)

sont requis pour visionner cette image.

Errico and Vukicevic (NCAR, 1991)

12

QuickTime™ et un
décompresseur TIFF (LZW)

sont requis pour visionner cette image.

Errico and Vukicevic (NCAR, 1991)

13

Adjoint Method. Slightly less elementary

Input vector u = (ui), dimu = n

Numerical process, implemented on computer (e. g. integration of numerical
model)

u → v = G(u)

 v = (vj) is output vector , dimv = m

 Perturbation δu = (δui) of input. Resulting first-order perturbation on v

 δvj = Σi (∂vj/∂ui) δui

 or, in matrix form

 δv = G’δu

 where G’≡ (∂vj/∂ui) is local matrix of partial derivatives, or jacobian matrix, of
G.

14

Adjoint Method. Slightly less elementary (2)

 δv = G’δu (D)

 Scalar function of output

J(v) = J[G(u)]

Gradient ∇∇∇∇u J of J with respect to input u?

‘Chain rule’

∂J/∂ui = Σj ∂J/∂vj (∂vj/∂ui)

or

 ∇∇∇∇u J = G’T ∇∇∇∇v J
(A)

15

Adjoint Method. Slightly less elementary (3)

 G is the composition of a number of successive steps

G = GN ° … ° G2 ° G1

‘Chain rule’

G’ = GN’ … G2’ G1’

Transpose

G’T = G1’
T G2’

T … GN’T

Transpose, or adjoint, computations are performed in reversed order of direct computations.

If G is nonlinear, local jacobian G’ depends on local value of input u. Any quantity which is an

argument of a nonlinear operation in the direct computation will be used gain in the adjoint

computation. It must be kept in memory from the direct computation (or else be recomputed again in

the course of the adjoint computation).

If everything is kept in memory, total operation count of adjoint computation is at most 4 times

operation count of direct computation (in practice about 2).

16

Adjoint Method. The Case of Variational Assimilation

J(ξ0) = (1/2) (x0
b - ξ0)

T [P0
b]-1 (x0

b - ξ0) + (1/2) Σk[yk - Hk(ξk)]
T Rk

-1 [yk - Hk(ξk)]

subject to ξk+1 = Mk(ξk) , k = 0, …, K-1

Control variable ξ0 = u

Adjoint equation

 λK = HK’T RK
-1 [HK(ξK) - yK]

λk = Mk’
Tλk+1 + Hk’

T Rk
-1 [Hk(ξk) - yk] k = K-1, …, 1

λ0 = M0’
Tλ1 + H0’

T R0
-1 [H0(ξ0) - y0] + [P0

b]-1 (ξ0 - x0
b)

where HK’T and Mk’
T are transpose jacobian matrices of Hk and Mk respectively

Then

∇u J = λ0

That is exactly what is done in operational 4DVar.

