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Summary of Part I: The cost function

The most likely trajectory of the system is the
one that minimizes the cost function

Jo({x(t)}) =
n∑

j=1

[yo
j−Hj(x(tj))]TR−1

j [yo
j−Hj(x(tj))].

(1)
Thus, the “most likely” trajectory is also the
one that best fits the observations in a least
square sense. Three assumptions were made
to obtain this cost function:

• The observation errors is Gaussian

• The the errors of the observations taken at
different times tj (j = 1, . . . , n) are uncor-
related

• The observed quantities depend on the sys-
tem state in a known way Hj(x(tj)
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Summary of Part I: Extended Kalman Fil-
ter

x̄b
n = Mtn−1,tn(x̄a

n−1), (2)

Pb
n = Mtn−1,tnP

a
n−1M

T
tn−1,tn. (3)

Jo
tn(x) = (4)

[x− x̄b
n]T (Pb

n)−1[x− x̄b
n]

+ [yo
n −Hn(x)]TR−1

n [yo
n −Hn(x)] + c.

From (4) we determine the state estimate x̄a
n

and its covariance Pa
n.

• Mtn−1,tn is the linearization of Mtn−1,tn around
x̄a

n−1. (To obtain x̄a
n and its covariance Pa

n
we also need the linearization Hn of Hn

around x̄b
n.)

• The main obstacle to a practical implemen-
tation is the computational cost of (3).
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Summary of Part I: Strategies for Approx-
imate Solutions

• Direct Minimization of (4): Variational data
assimilation schemes (3DVar and 4DVar)

• Solving the equations that provide the min-
imum of (4) for the linear case (OI and
PSAS): x̄a

n = x̄b
n + Pa

nHT
nR−1

n (yo
n − Hnx̄b

n),
where Pa

n = (I + Pb
nHT

nR−1
n Hn)−1Pb

n.

For both types of schemes, in the operational
practice

• The state estimate is evolved from one
analysis cycle to the next using (2) [x̄b

n =
Mtn−1,tn(x̄a

n−1)]

• Pb
j is kept constant and an equivalent of

(3) is not needed
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An Alternative Strategy: Ensemble-Based
Kalman Filters

• Assume that we have an ensemble {xa(i)
n−1 :

i = 1, 2, . . . , k} of model state vectors at
time tn−1

• The background ensemble {xb(i)
n : i = 1, 2, . . . , k}

at time tn is obtain by:

xb(i)
n = Mtn−1,tn(xa(i)

n−1).

• For the background state estimate and its
covariance, we use the sample mean and
covariance of the background ensemble:

x̄b = k−1
k∑

i=1

xb(i),

Pb = (k − 1)−1
k∑

i=1

(xb(i) − x̄b)(xb(i) − x̄b)T

5



An Alternative Strategy: Ensemble-Based

Kalman Filters (continued)

Based on the above information, an ensemble-

based Kalman scheme returns an ensemble {xa(i) :

i = 1, 2, . . . , k} of analyses with the appropriate

sample mean and covariance:

x̄a = k−1
k∑

i=1

xa(i),

Pa = (k − 1)−1
k∑

i=1

(xa(i) − x̄a)(xa(i) − x̄a)T

The challenge: to find an algorithm that pro-

vides an accurate x̄a estimate of the state and

a good representation of Pa using a relatively

small ensemble (e.g. k ≤ 100)

Potential advantage: a spatio-temporally vary-

ing representation of Pb and Pa that depends

both on the flow and on the observing network
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A Remark on the Rank of Pb

The rank of Pb is equal to the rank of Xb,

which is at most k − 1 because the sum of its

columns is 0. Thus, the ensemble size limits

the rank of the background covariance matrix.

This can be both a serious limitation and an

advantage:

• Potential Limitation: For a k-member

ensemble the ensemble-based estimate of

Pb can capture uncertainties in k − 1 state

space direction. The ensemble based esti-

mate can be potentially rank-defficient.

• Potential Advantage: Doing the matrix

calculation in a k − 1-dimensional space is

computationally extremely cheap compared

to doing the calculation in a 106 − 108 di-

mensional space.
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Covariance localization: An Efficient Ap-

proach to Address Rank Defficiency

The covariance is considered only between state

variables at nearby locations. (Formally, most

off-diagonal entries of Pb are replaced with ze-

ros, which restores the high rank of Pb.)

Different functions have been used for localiza-

tion, e.g., step functions that drop from from

1 to 0 at a given distance, functions that de-

crease gradually from 1 to 0 with a Gaussian

shape.

An additional advantage of the localization is

that it decouples the analysis process at the lo-

cations that are further apart from each other

than the localization radiance. This allows for

an efficient implementation on a parallel com-

puter.
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Classification of the Schemes based on the

approach they obtain the analysis ensemble

• Perturbed-observation schemes

– k sets of observations are obtained by

perturbing the observations by k sets of

random observational noise generated

according to R

– The gain matrix K is applied to each

background ensemble member and a set

of observations to obtain the associated

analysis ensemble member

– For an infinitely large ensemble, the en-

semble of analyses generated such a way

would accurately represent Pa = (I −
KH)
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– This is the original Evensen (1993) for-

mulation, except that he did not per-

turbed the observations, which led to

the incorrect Pa
n = (I−KH)Pb

n(I−KH)T

• Square -Root Filters

– Pa is calculated from the standard equa-

tion Pa
n = (I + Pb

nHT
nR−1

n Hn)−1Pb
n.

– An ensemble is generated such that it

exactly represent Pa
n. (This involves the

calculation of a matrix square-root).

– Because Pa
n is exactly represented inde-

pendently of k, this approach provides

much more accurate analyses for small

ensemble sizes (for an illustration of this

effect see Whitaker and Hamill 2002).



Examples for Perturbed-Observation Schemes

and Square-Root Filters

• Perturbed-Observation Schemes (also of-

ten called Ensemble Kalman Filter, EnKF):

Burgers et al. 1998; Houtekamer and Mitchell

1998 and later papers: papers by Snyder,

Zhang, Hakim and different coauthors.

• Square-Root Filters: Ensemble Adjustment

Kalman Filter (EnAKF, Anderson 2001);

Ensemble Transform Kalman Filter (ETKF,

Bishop et al. 2001); Ensemble Square-

Root Filter (EnSQR, Whitaker and Hamill

2002); Local Ensemble Kalman Filter (LEKF,

Ott et al. 2002 and 2004) and Local En-

semble Transform Kalman Filter (LETKF,

Hunt et al. 2007); Maximum Lekelihood

Ensemble Filter (MLEF, Zupanski 2005)
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Classification of the Schemes based on the
processing of the observational information

• Serial Schemes: Assimilate the observa-
tions one by one or by batches of correlated
observations; all state vector component is
updated that may be affected by the given
observation (examples are all schemes with
the exceptions below)

• Local Schemes: The state is updated in-
dependently for each grid point (or for each
state vector component) assimilating all ob-
servations simultaneously, which may af-
fect the state estimate at the given grid
point (LEKF and LETKF)

• Global Schemes: Assimilate all observa-
tions without covariance localization (ETKF
and MLEF)
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Classification of the Schemes based on the

analysis update method

All schemes obtain the analysis by an equiva-

lent of x̄a
n = x̄b

n+Pa
nHT

nR−1
n (yo

n−Hnx̄b
n), except

for the MLEF scheme that is based on the vari-

ational approach
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Which scheme would be the best for my

application?

• When carefully implemented the different

formulations should be equally accurate and

the advantages and disadvantages are pri-

marily associated with the computational

efficiency. In particular,

– Global schemes are not competitive for

the affordable ensemble sizes (k ≤ 100)

– Square-Root Filters work well for small

ensembles (20 ≤ k ≤ 60), which makes

them more efficient than the perturbed-

observation schemes

• For a large number of observations (e.g.,

for more than 105 observations) on a par-

allel computer architecture the LETKF is
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by far the fastest, though serial schemes

allow for an efficient data thinning proce-

dure, which may eliminate most of the ad-

vantage of the LETKF when there is a lot

of redundancy between the observations

• On a single processor machine serial schemes

should be the fastest, since in that case the

LETKF cannot take advantage of the fact

that it can process the different grid points

independently


