Non-Gaussianity in Data Assimilation (A Brief Tour)

Bengtsson et al., 2003: J. Geophys. Res., 62(D24), 8775-8785.

Chris Snyder, National Center for Atmospheric Research

Preliminaries

Notation

- x = atmospheric state written in terms of a finite, discrete basis, e.g. grid-point values or Fourier coefficients
- \triangleright **y** = set of observations valid at a given time
- $ightharpoonup \dim(\mathbf{x}) = N_x, \dim(\mathbf{y}) = N_y$

The Bayesian view

- true x can not be known, so consider x as random variable
- \triangleright let subscripts indicate times, $\mathbf{x}_k = \mathbf{x}(t_k)$
- \triangleright our goal is to calculate $p(\mathbf{x}_k|\mathbf{y}_1,\ldots,\mathbf{y}_l)$

Preliminaries (cont.)

Terminology

- ho "analysis" (pdf) is $p(\mathbf{x}_k|\mathbf{y}_1,\ldots,\mathbf{y}_l)$ with l=k; i.e., pdf of state \mathbf{x}_k conditioned on observations up to same time, t_k .
- ightharpoonup "forecast" (pdf) is $p(\mathbf{x}_k|\mathbf{y}_1,\ldots,\mathbf{y}_l)$ with l=k-1; i.e. pdf of state \mathbf{x}_k conditioned on obs up to previous time, t_{k-1} .

Preliminaries (cont.)

Bayes rule

- \triangleright definition of conditional pdf: $p(\mathbf{x}|\mathbf{y}) = p(\mathbf{x},\mathbf{y})/p(\mathbf{y})$
- \triangleright similarly, $p(\mathbf{y}|\mathbf{x}) = p(\mathbf{x},\mathbf{y})/p(\mathbf{x})$
- ▷ thus,

$$p(\mathbf{x}|\mathbf{y}) = p(\mathbf{y}|\mathbf{x})p(\mathbf{x})/p(\mathbf{y})$$

More terminology

- $p(\mathbf{x})$ is the "prior:" what we know about the state <u>before</u> the obs
- $\triangleright p(\mathbf{x}|\mathbf{y})$ is the "posterior:" what we know <u>after</u> the observations
- $p(\mathbf{y}|\mathbf{x})$ is the "observation likelihood:" a conditional pdf for \mathbf{y} that we treat as a function of \mathbf{x} . Requires knowledge of the statistics of measurement and representativeness errors.

Sequential, Bayesian Assimilation

Suppose we have a forecast for \mathbf{x}_k and new observations \mathbf{y}_k

use Bayes rule to "update" (calculate analysis pdf)

$$p(\mathbf{x}_k|\mathbf{y}_1,\ldots,\mathbf{y}_k) = p(\mathbf{y}_k|\mathbf{x}_k)p(\mathbf{x}_k|\mathbf{y}_1,\ldots,\mathbf{y}_{k-1})/p(\mathbf{y}_k)$$

- \triangleright sequential: \mathbf{y}_k is needed for computation of $p(\mathbf{y}_k|\mathbf{x}_k)$, then discarded
- sequential form requires that \mathbf{y}_k is conditionally independent of all previous observations given \mathbf{x}_k . In general (e.g. obs errors correlated in time), $p(\mathbf{y}_k|\mathbf{x}_k)$ and $p(\mathbf{y}_k)$ should be conditioned on $\mathbf{y}_1, \ldots, \mathbf{y}_{k-1}$

Simplified notation

 \triangleright suppress reference to $\mathbf{y}_1, \dots, \mathbf{y}_{k-1}$ and to specific time t_k

$$p(\mathbf{x}|\mathbf{y}) = p(\mathbf{y}|\mathbf{x})p(\mathbf{x})/p(\mathbf{y})$$

Bayesian Assimilation Illustrated

 \triangleright forecast p(x) for one-dimensional example: state x is a scalar

Bayesian Assimilation Illustrated

 \triangleright observation likelihood p(y|x) for y = 0.8

Bayesian Assimilation Illustrated

 \triangleright analysis p(x|y)

Bayes Rule for Gaussians

"Linear, Gaussian case"

- \triangleright linear observations with additive error, $\mathbf{y} = \mathbf{H}\mathbf{x} + \epsilon$
- \triangleright prior/forecast $p(\mathbf{x})$ and pdf of ϵ are Gaussian

Consequences of linear, Gaussian case

- \triangleright $\mathbf{y} = \mathbf{H}\mathbf{x} + \epsilon$ and $\epsilon \sim \text{Gaussian} \Rightarrow p(\mathbf{y}|\mathbf{x})$ Gaussian
- \triangleright analyis/posterior $p(\mathbf{x}|\mathbf{y})$ is product of Gaussians and so Gaussian too

Linear, Gaussian case (cont.)

Kalman filter = Bayes rule for linear, Gaussian case

▷ analysis equations:

$$\overline{\mathbf{x}}^a = (\mathbf{I} - \mathbf{K}\mathbf{H})\overline{\mathbf{x}}^f + \mathbf{K}\mathbf{y}, \quad \mathbf{P}^a = (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{P}^f,$$

Kalman gain

$$\mathbf{K} = \mathbf{P}^f \mathbf{H}^T (\mathbf{H} \mathbf{P}^f \mathbf{H}^T + \mathbf{R})^{-1}$$

 \triangleright notation: overbar indicates mean, superscript a (f) indicates analysis (forecast), \mathbf{P} is state covariance, \mathbf{R} is covariance of ϵ

Linear, Gaussian Case (cont.)

Kalman filter update

$$ho$$
 $\overline{\mathbf{x}}^a = (\mathbf{I} - \mathbf{K}\mathbf{H})\overline{\mathbf{x}}^f + \mathbf{K}\mathbf{y}, \quad \mathbf{P}^a = (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{P}^f$

Properties

- \triangleright only need means and covariances: $\overline{\mathbf{x}}^f$ and \mathbf{P}^f for prior, $\overline{\mathbf{x}}^a$ and \mathbf{P}^a for posterior, \mathbf{R} for ϵ
- $ightarrow \overline{\mathbf{x}}^a$ depends linearly on $\overline{\mathbf{x}}^f$ and \mathbf{y}
- ho variance is smaller in analysis: since \mathbf{KHP}^f is positive definite $\mathbf{P}^a = \mathbf{P}^f \mathbf{KHP}^f \Rightarrow \operatorname{tr}(\mathbf{P}^a) < \operatorname{tr}(\mathbf{P}^f)$
- $ightharpoonup {f P}^a$ does not depend on ${f y}$
- analysis is sensitive to outliers

ightharpoonup prior p(x)

 \triangleright observations likelihood p(y|x)

 $\, \triangleright \, \, \, \operatorname{posterior} \, p(x|y)$

 \triangleright analysis variance is independent of y: y=1.2

 \triangleright analysis variance is independent of y: y=1.6

 \triangleright analysis variance is independent of y: y=2.0

Gaussians and Outliers

 \triangleright forecast mean and observation differ by " 6σ :" $\bar{x}^f=1$, y=1.7

- Analysis mean has <u>very</u> low probability under both prior and likelihood
- If observation errors are assumed Gaussian but in fact are not (e.g. occasional large errors), then analysis will be strongly degraded

Non-Gaussian Effects

Results for general pdfs may be qualitatively different

- ▷ e.g., differences between mean and mode (most likely state)
- > analysis mean depends nonlinearly on observations
- analysis variance depends on value of observations
- analysis variance can be larger than that of forecast
- pdfs with longer tails are less sensitive to outliers

- \triangleright suppose p(x) and p(y|x) are exponential pdfs
- \triangleright analysis variance depends on y: $\mathrm{var}(x|y) = 0.23^2$ for y = 1.7

- \triangleright suppose p(x) and p(y|x) are exponential pdfs
- \triangleright analysis variance depends on y: $var(x|y) = 0.23^2$ for y = 1.7

- \triangleright analysis variance larger than forecast variance (0.18^2)
- > analysis pdf is close to forecast pdf, despite outlying observation

 \triangleright $p(x_1, x_2)$ for 2D state (x_1, x_2) ; thin lines indicate marginal pdfs

- \triangleright observation $y = x_1 + \epsilon = 1.1$
- \triangleright $p(y|x_1,x_2)$ does not depend on x_2

- $\triangleright p(x_1, x_2|y)$
- $\,dash\,$ marginal variances increase, marginal for x_2 becomes bimodal

Dealing with non-Gaussianity

Direct calculation of Bayesian update

- in principle, could represent required pdfs on discrete grid, then
 perform multiplication directly
- \triangleright no approximations, other than those required in specifying observation operators and errors and in evolving $p(\mathbf{x})$ from analysis to forecast times.

Dealing with non-Gaussianity

Direct calculation is difficult when dimension is large

- \triangleright recall that $p(\mathbf{x})$ is a function in $N_x = \dim(\mathbf{x})$ variables
- \triangleright thus, gridded representation of $p(\mathbf{x})$ requires number of grid points that scales as $\exp(N_x)$... computationally intractable
- \triangleright e.g. if $\dim(\mathbf{x}) = 100$ and we allow 10 grid points for each of the variables x_1, \ldots, x_{100} , then we need 10^{100} points (!)

Maximum likelihood estimation

- hd calculate the posterior mode, ${f x}$ s.t. $p({f x}|{f y})$ is maximum, rather than entire posterior pdf
- ightharpoonup equivalently, minimize $-\log\left(p(\mathbf{x}|\mathbf{y})\right)$... as in 4DVar
- \triangleright does not provide $p(\mathbf{x}|\mathbf{y})$; also requires models for $p(\mathbf{x})$

Particle filter (PF)

- Monte-Carlo approach: start from ensemble $\{\mathbf{x}_i^f, i=1,\ldots,N_e\}$ that is assumed to be random draw from $p(\mathbf{x})$
- approximate prior pdf as sum of point masses,

$$p(\mathbf{x}) pprox N_e^{-1} \sum_{i=1}^{N_e} \delta(\mathbf{x} - \mathbf{x}_i^f)$$

 $hd ext{ Bayes} \Rightarrow$

$$p(\mathbf{x}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{x}) \sum_{i=1}^{N_e} \delta(\mathbf{x} - \mathbf{x}_i^f) = \sum_{i=1}^{N_e} p(\mathbf{y}|\mathbf{x}_i^f) \delta(\mathbf{x} - \mathbf{x}_i^f)$$

▷ thus, posterior pdf approximated by weighted sum of point masses

$$p(\mathbf{x}|\mathbf{y}) \approx \sum_{i=1}^{N_e} w_i \delta(\mathbf{x} - \mathbf{x}_i^f), \quad \text{with} \quad w_i = \frac{p(\mathbf{y}|\mathbf{x}_i^f)}{\sum_{j=1}^{N_e} p(\mathbf{y}|\mathbf{x}_j^f)}$$

Asymptotically convergent to Bayes rule

 \triangleright PF yields an exact implementation of Bayes' rule as $N_e \to \infty$; no approximations other than finite ensemble size

Exceedingly simple

 \triangleright main calculation is $p(\mathbf{y}|\mathbf{x}_i^f)$ for $i=1,\ldots,N_e$.

Widely applied, and effective, in low-dim'l systems

PF Illustrated

 \triangleright $p(\mathbf{x})$, as before, and prior ensemble

PF Illustrated

ho $p(\mathbf{x}|\mathbf{y})$ and "weighted" ensemble (size \propto weight)

PF Illustrated

 \triangleright $p(\mathbf{x}|\mathbf{y})$ and "weighted" ensemble (size \propto weight)

weighted ensemble captures bimodality

Refinements of PF ___

Many members recieve very small weights

- resampling: need to "refresh" ensemble; members with small weights are dropped, while additional members are added near members with large weights
- importance sampling: draw original ensemble from another distribution that incorporates additional information, for example from latest observations

Problems arise for high-dimensional systems

 \triangleright strong tendency for $\max w_i \to 1$

Best linear unbiased estimator (BLUE)

- ask for the linear estimator (analysis) that has minimum expected squared error
- ▷ to fix ideas, consider the scalar case, but can generalize to multivariate
- $\, \triangleright \,$ given: $y = x + \epsilon$ and a prior or forecast estimate $\hat{x}^f = x + \epsilon^f$

BLUE

Linear estimator

 \triangleright estimator \hat{x} depends linearly on y and \hat{x}^f , $\hat{x} = ay + b\hat{x}^f$

Unbiased

- ightharpoonup want $E(\hat{x}-x)=0$ if $E(\epsilon)=E(\epsilon^f)=0$
- $\, \triangleright \,$ since $\hat{x} x = (a+b-1)x + a\epsilon + b\epsilon^f$, must have a+b=1
- $\, \triangleright \,$ note \hat{x}^f must be the prior mean of x if $E(\epsilon^f) = 0$

BLUE (cont.)

"Best" = minimum expected squared error

 \triangleright expected squared error of \hat{x} given by

$$E\left((\hat{x}-x)^2\right) = a^2\sigma_o^2 + (1-a)^2\sigma_f^2 + 2E(\epsilon\epsilon^f)$$

 \triangleright take $E(\epsilon \epsilon^f) = 0$ for simplicity; minimizing w.r.t. a gives

$$a = \sigma_f^2/(\sigma_o^2 + \sigma_f^2), \quad b = \sigma_o^2/(\sigma_o^2 + \sigma_f^2)$$

 \triangleright back substitution yields $E\left((\hat{x}-x)^2\right)$

Estimator involves only mean and covariances

- ▷ equivalent to Kalman filter in linear, Gaussian case
- $riangleq \underline{but}$, no assumption of Gaussianity of ϵ and ϵ^f ; BLUE properties hold for arbitrary pdfs

Bayesian View of the BLUE

Begin with $p(\mathbf{x})$ and observations \mathbf{y}

BLUE defines linear (affine) transformation of x

- \triangleright i.e., a new random variable $\mathbf{x}^a = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y}$
- \triangleright \mathbf{x}^a has known mean and covariance matrix given by BLUE formulas
- \triangleright \mathbf{x}^a need not be Gaussian
- \triangleright in linear, Gaussian case, \mathbf{x}^a has pdf $p(\mathbf{x}|\mathbf{y})$

EnKF is Monte-Carlo implementation of BLUE in joint stateobs space

 $ightarrow p(\mathbf{x})$ and ensemble

 $\qquad \qquad p(y|\mathbf{x}) \text{ for } y = 1.1 \\$

ho $p(\mathbf{x}|y)$ from Bayes rule and analysis ensemble from BLUE/EnKF

 sample retains non-Gaussian curvature but does not capture bimodality

ho $p(\mathbf{x}|y)$ from Bayes rule and analysis ensemble from BLUE/EnKF

 sample retains non-Gaussian curvature but does not capture bimodality

ho $p(\mathbf{x}|y)$ from Bayes rule and analysis ensemble from BLUE/EnKF

 sample retains non-Gaussian curvature but does not capture bimodality

▷ prior (blue) and analysis (black) ensembles from BLUE/EnKF

transformation by BLUE shifts ensemble toward observation; little contraction of variance in analysis ensemble in this case

Closing Thoughts

General treatment of non-Gaussian effects is hard

- direct calculations are overwhelmingly expensive
- particle filters also problematic, except for low-dimensional systems

Linear or approximately Gaussian approaches often work well

other issues, such as model error and flow-dependence of covariances, more important?

Non-Gaussian effects significant in some applications

- tailored treatments based on specific assumptions about form of non-Gaussianity
- ▷ e.g., variational quality control