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Preliminaries

Notation
> will follow Ide et al. (1997), generally

> x = atmospheric state written in terms of a finite, discrete basis, e.g.
grid-point values or Fourier coefficients

> y = set of observations valid at a given time
> dim(x) = N,, dim(y) = N,

The Bayesian view
> true x can not be known, so consider x as random variable
> let subscripts indicate times, xi = x(tx)

> our goal is to calculate p(xg|yy,-..,Y;)



Preliminaries (cont.)

Terminology

> "analysis” (pdf) is p(xk|yy,...,Yy;) with [ = E;
I.e., pdf of state x;, conditioned on observations up to same time, .

> "forecast” (pdf) is p(xk|yy,---,Yy;) withl =k —1;
i.e. pdf of state x;. conditioned on obs up to previous time, t5_;.



Preliminaries (cont.)

Bayes rule
> definition of conditional pdf: p(x|y) = p(x,y)/p(y)

> similarly, p(y|x) = p(x,y)/p(x)
> thus,

p(xly) = p(y|x)p(x)/p(y)

More terminology

> p(x) is the "prior:" what we know about the state before the obs

> p(x|y) is the " posterior:” what we know after the observations

> ply[x) is the "observation likelihood:" a conditional pdf for y that
we treat as a function of x. Requires knowledge of the statistics of
measurement and representativeness errors.



Sequential, Bayesian Assimilation

Suppose we have a forecast for x; and new observations y,,
> use Bayes rule to "update” (calculate analysis pdf)
P(XklY1;- -, ¥i) = P(YilXk)P(XklY1, - - -, Yi—1)/D(¥i)

> sequential: y, is needed for computation of p(y, [x;), then discarded
> sequential form requires that y, is conditionally independent of all
previous observations given x;. In general (e.g. obs errors correlated
in time), p(y.|xx) and p(y;) should be conditioned on y,...,y;._;
Simplified notation

> suppress reference to y,,...,y,_; and to specific time t;

p(xly) = p(y|x)p(x)/p(y)



Bayesian Assimilation lllustrated

> forecast p(x) for one-dimensional example: state x is a scalar
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Bayesian Assimilation lllustrated

> observation likelihood p(y|x) for y = 0.8
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Bayesian Assimilation lllustrated

> analysis p(x|y)
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Bayes Rule for Gaussians

“Linear, Gaussian case”
> linear observations with additive error, y = Hx + ¢

> prior/forecast p(x) and pdf of € are Gaussian

Consequences of linear, Gaussian case
> y = Hx+ ¢ and € ~ Gaussian = p(y|x) Gaussian

> analyis/posterior p(x|y) is product of Gaussians and so Gaussian too



Linear, Gaussian case (cont.)

Kalman filter = Bayes rule for linear, Gaussian case
> analysis equations:
x* = (1—KH)X' +Ky, P%=(1—-KH)P/,
> Kalman gain
K=P/H'(HP/H” +R)™!

> notation: overbar indicates mean, superscript a (f) indicates analysis
(forecast), P is state covariance, R is covariance of ¢



Linear, Gaussian Case (cont.)

Kalman filter update
> X' =(I—KH)X +Ky, P*=(1—KHP/

Properties

> only need means and covariances:
x/ and P7 for prior, X* and P“ for posterior, R for ¢

> X* depends linearly on X/ and y
> variance is smaller in analysis: since KHP/ is positive definite
P* = P/ — KHP/ = tr(P%) < tr(P/)

> P® does not depend on y

> analysis is sensitive to outliers



Gaussians lllustrated

> prior p(x)
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Gaussians lllustrated

> observations likelihood p(y|x)
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Gaussians lllustrated

> posterior p(x|y)
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Gaussians lllustrated

> analysis variance is independent of y: y = 1.2
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Gaussians lllustrated

> analysis variance is independent of y: y = 1.6
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Gaussians lllustrated

> analysis variance is independent of y: y = 2.0
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Gaussians and Qutliers

> forecast mean and observation differ by “60:" z/ =1, y = 1.7
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> Analysis mean has very low probability under both prior and likelihood

> If observation errors are assumed Gaussian but in fact are not (e.g.
occasional large errors), then analysis will be strongly degraded



Non-Gaussian Effects

Results for general pdfs may be qualitatively different
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e.g., differences between mean and mode (most likely state)
analysis mean depends nonlinearly on observations

analysis variance depends on value of observations

analysis variance can be larger than that of forecast

pdfs with longer tails are less sensitive to outliers



Non-Gaussian Effects (cont.)

> suppose p(x) and p(y|z) are exponential pdfs

> analysis variance depends on y: var(z|y) = 0.23° for y = 1.7
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Non-Gaussian Effects (cont.)

> suppose p(x) and p(y|x) are exponential pdfs

> analysis variance depends on y: var(z|y) = 0.23° for y = 1.7
5

> analysis variance larger than forecast variance (0.182)

> analysis pdf is close to forecast pdf, despite outlying observation



Non-Gaussian Effects (cont.)

> p(x1,x2) for 2D state (x1,x2); thin lines indicate marginal pdfs




Non-Gaussian Effects (cont.)

> observation y =21 +e=1.1

> p(y|x1, x2) does not depend on -
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Non-Gaussian Effects (cont.)

> p(iﬁljiﬂzhj)

> marginal variances increase, marginal for 22 becomes bimodal
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Dealing with non-Gaussianity

Direct calculation of Bayesian update
> in principle, could represent required pdfs on discrete grid, then
perform multiplication directly

> no approximations, other than those required in specifying observation
operators and errors and in evolving p(x) from analysis to forecast
times.
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Dealing with non-Gaussianity

Direct calculation is difficult when dimension is large
> recall that p(x) is a function in N, = dim(x) variables

> thus, gridded representation of p(x) requires number of grid points
that scales as exp(N,) ... computationally intractable

> e.g. if dim(x) = 100 and we allow 10 grid points for each of the
variables @1, ..., x100, then we need 10'°° points (!)
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Dealing with non-Gaussianity (cont.)

Maximum likelihood estimation

> calculate the posterior mode, x s.t. p(x|y) is maximum, rather than
entire posterior pdf

> equivalently, minimize — log (p(x|y)) ... as in 4DVar

> does not provide p(x|y); also requires models for p(x)



Dealing with non-Gaussianity (cont.)

Particle filter (PF)

> Monte-Carlo approach: start from ensemble {xjc; = lywers N} Ehat
is assumed to be random draw from p(x)

> approximate prior pdf as sum of point masses,

Ne
x) mN;lzg(x—xf)

> Bayes = .
ol el S e~ D_ i )50x — 1)

> thus, posterior pdf azpplroximated by wmghted sum of point masses
p(xly) = Zw“ X — x with w; = P(Y[xf)

Ne
j=1 Zj:lp(ﬂxf)



Dealing with non-Gaussianity (cont.)

Asymptotically convergent to Bayes rule

> PF vyields an exact implementation of Bayes' rule as N. — oo; no
approximations other than finite ensemble size

Exceedingly simple

> main calculation is ;u(y|x'!:) foréi=1,...,Ne

Widely applied, and effective, in low-dim’l systems



PF lllustrated

> p(x), as before, and prior ensemble
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PF lllustrated

> p(x|y) and " weighted” ensemble (size oc weight)
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PF lllustrated

> p(x|y) and " weighted” ensemble (size oc weight)
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> weighted ensemble captures bimodality



Refinements of PF

Many members recieve very small weights

> resampling: need to “refresh” ensemble; members with small weights
are dropped, while additional members are added near members with
large weights

> importance sampling: draw original ensemble from another
distribution that incorporates additional information, for example
from latest observations

Problems arise for high-dimensional systems

> strong tendency for maxw; — 1



Dealing with non-Gaussianity (cont.)

Best linear unbiased estimator (BLUE)

> ask for the linear estimator (analysis) that has minimum expected
squared error

> to fix ideas, consider the scalar case, but can generalize to multivariate

> given: y = = + € and a prior or forecast estimate &/ = x + €/



BLUE

Linear estimator
> estimator & depends linearly on y and &7,
& = ay + bi!

Unbiased
> want BE(2—z)=0if E(e) = E(¢/) =0
> since —x = (a+b— 1)x + ae + bef, must have
a4b=1

> note &/ must be the prior mean of z if E(¢/) =0



BLUE (cont.)

“Best” = minimum expected squared error

> expected squared error of & given by
E((z—2)?) =a*o; + (1 - a)zr:r? + 2E(ee’)

> take E(eel) = 0 for simplicity; minimizing w.r.t. a gives
0= o302 +0%), b=o¥/(o+0P)

> back substitution yields E ((Z — z)?)

Estimator involves only mean and covariances
> equivalent to Kalman filter in linear, Gaussian case

> but, no assumption of Gaussianity of ¢ and e/; BLUE properties hold
for arbitrary pdfs



Bayesian View of the BLUE

Begin with p(x) and observations y

BLUE defines linear (affine) transformation of x

> i.e., a new random variable x* = Ax + By

> X% has known mean and covariance matrix given by BLUE formulas
> x% need not be Gaussian
>

in linear, Gaussian case, x* has pdf p(x|y)

EnKF is Monte-Carlo implementation of BLUE in joint state-
obs space



BLUE/EnKF lllustrated

> p(x) and ensemble

2
15}
'f.'.
o 1 '§
&E_
05} e
0



BLUE/EnKF lllustrated

> p(y|x) fory = 1.1
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BLUE/EnKF lllustrated

> p(x|y) from Bayes rule and analysis ensemble from BLUE/EnKF
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> sample retains non-Gaussian curvature but does not capture
bimodality



BLUE/EnKF lllustrated

> p(x|y) from Bayes rule and analysis ensemble from BLUE/EnKF
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> sample retains non-Gaussian curvature but does not capture
bimodality



BLUE/EnKF lllustrated

> p(x|y) from Bayes rule and analysis ensemble from BLUE/EnKF
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> sample retains non-Gaussian curvature but does not capture
bimodality



BLUE/EnKF lllustrated

> prior (blue) and analysis (black) ensembles from BLUE/EnKF
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> transformation by BLUE shifts ensemble toward observation; little
contraction of variance in analysis ensemble in this case



Closing Thoughts

General treatment of non-Gaussian effects is hard
> direct calculations are overwhelmingly expensive

> particle filters also problematic, except for low-dimensional systems

Linear or approximately Gaussian approaches often work well

> other issues, such as model error and flow-dependence of covariances,
more important?

Non-Gaussian effects significant in some applications

> tailored treatments based on specific assumptions about form of
non-Gaussianity

> e.g., variational quality control



