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Data assimilation in NWP
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Data Assimilation = Analysis
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The error 1n the 1nitial condition
(ANL) grows 1n a chaotic system



Probabilistic view

OBS w/ errors

ANL w/ errors
Problem:
/
/ d.o.f. of the system: ~O(109)
/

// d.o.f. of the error: even
/ Gaussian distribution has

// d.o.f. of the covariance

’ ~O(101?)
@ —--TTTT IP

ANL w/ errors FCST w/ errors ~ Too large to express

T=t0 T=t1 explicitly



A schematic of EnKF
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EnKF = ensemble fcst. + ensemble update



A core concept of EnKF

Complementary relationship between data
assimilation and ensemble forecasting

Data Assimilation

NL Error FCST err

Ensemble Forecasting

This cycle process = EnKF

Analyze with the flow-dependent forecast error, ensemble
forecast with 1nitial ensemble reflecting the analysis error



Difference between EnKF and 3D-Var

Flow-dependent errors expand
\ in Igw=dimensionabsybspace
x? Uniform errOxstructure
N\
B
“Errors of the day’

y’ x/

AnalySts<aithout flew-depehdent
error structure (e.g., 3D-Var)




Flow-dependence of B 1n L96
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Error covariance matrix
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time levels, showing
time evolution of B



An example of EnKF analysis accuracy

RMSE [m]

EnKF 1s advantageous to traditional data assimilation methods
including 3D-Var, currently in operations at several NWP centers.

Many centers (ECMWF,

SPEEDY—EnKF ANALYSIS RMSE (500hPa Height) IMA, UK MetOffice,
---------- SOVAR
30 ensemble members sk MeteorFrance, Canada,
T etc.) switched to 4D-Var

which also considers
flow-dependent error
structures.
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EnKF vs. 4D-Var

(e.g., TC center)

EnKF 4D-Var
“advanced” method? Y Y
Simple to code? Y N (e.g., Minimizer)
Adjoint model? N Y
Observation operator Only forward Adjoint required

Asynchronous obs? Y (4D-EnKF) Y (intrinsic)
Initialization after N Y

analysis?

Analysis errors? Y (ensemble ptb) N

Limitation

ensemble size

Assim. window

EnKF with infinite ensemble size and 4D-
Var with infinite window are equivalent.




EnKF - summary

 EnKF considers flow-dependent error structures,
or the “errors of the day”

— “advanced” data assimilation method

e 4D-Var 1s also an “advanced” method. How different?

 EnKF analyzes the analysis errors in addition to
analysis itself

— “1deal” ensemble perturbations



LETKF - Local Ensemble Transform Kalman Filter

e Invented by the Chaos Group (e.g., Profs.
Eugenma Kalnay, Ed Ott, Jim Yorke, Brian
Hunt, and more) at the University of Maryland

* Selected References of the method:

— LEKEF by Ott et al. (2004, Tellus)
— LETKF by Hunt et al. (2007, Physica D)

e More references and information:

— http://www.weatherchaos.umd.edu/



KF and EnKF

Kalman Filter

Ensemble Kalman Filter

X:[N] P:[NXN]
Forecast equations
le =M (x;_)
Pif = qulPicil

M. "+Q

X;

\

Kalman geain

K. =P/H'[HP/H" +R]”'

Analysis equations
x; =x/ +K,(y] —H(x[))—
P'=[1-K H|P/

X:[NxXm]

Ensemble forecasts

X7 =M (x)1- I M ()]
=M (X)) N <Ay
— Approximated by Pl,f ~ X (éXIl )
n —

oY = H(OX) :[ pxm]

K. =X/ (0Y) [0Y (YY) +(m—-DR]™
[pxp] matrix inverse

. Solve for the ensemble mean
—»Ensemble perturbations

&a — [(m_l)Pa ]1/2




LLETKF @unt 2005: Hunt et al. 2007: Ott et al. 2004)

e Two categories of the EnKF (Ensemble Kalman Filter)

Perturbed observation Square root filter (SRF)
(PO) method
Classical Relatively new
Already 1n operations Not 1n operations yet
(Canadian EPS)
Additional sampling No such additional
errors by PO sampling errors

e LETKF (Local Ensemble Transform Kalman Filter)

— 1s a kind of ensemble square root filter (SRF)

— 1s efficient with the parallel architecture



PO vs SRF

X = X/ T
X/TT (X' )" = (1-KH)X (X )"



KF

Forecast

le =M (X))
P/ =MP; M’

=1

/T [

Analysis
K, = I)iinT (Hil)iinT + Ri)_l
X, = le + K (y; —Hl.(xlf))

\ L_P-a-KHP




t=1 N Observations
/ / leuc) / |/ v'.R.

—i—1 A
a(k 2 _
X,-_(l) / K=1—.,m
J
o EnKF (PO)
xR
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Perturbations
&(lﬂk) — /0 _ le(")

,- X =[x/ I---1 6/ "]
é},f(k) :H(Xf(k))_H(Xf(k)) éY.f :[@,f(l) ||@,f(m)]

v

Analysis

K, =X/ (6Y/) +(oY/ (oY/) +R,J"

L= K e H )




Why do we need to perturb obs?

x! =x/" + K (y! - H,(x]"))

KO~ IO K H &/ ® o _ izmlxg(m
l m - l

X*=(I-KH)X’' -

P! =X (X[)'

=I-KH)P/I-K.H)’

Pia _ <8ia (8ia)T>

= ((a-KB)e/ +K e fa-K H)e/ +K &) )

=(I-KH)P/I-KH)" 4K RK, +cross




LETKEF algorithm (Hunt, 2003, et al., 2007)
I

f INT ~ ~
X (XD _ XD/ (XI) B = pmxm
m—1 N m—1
In the space spanned by /X’

P/ ~

P =[(m-DI/ p+(0Y) " R7'6Y]"' =UD'U’

_Eigenvalue decomposition: UDU" : [mXxm]

Analysis equations
X' =X/ +X'P'(6Y)' R™(y' ~H(x'))
X* = X' [(m-1)P*]"* = X/ Vm—-1UD"*U"
LETKF analysis
X‘ =%/ + X/ [P*(0Y) R (y* = H(x')) + Jm—1UD"*U" )

Ensemble analysis increments
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J
i LETKF
x/ =M (x¢"

t=1 N Observations
/ / leuc) / |/ v'.R.

= ——————

Perturbations
&‘zf(k) — /0 _ le<k>

,- X =[x/ I---1 6/ "]
5yf(k) :H(Xf(k))_H(Xf(k)) éY.f :[@,f(l) ||@,f(m)]

v

Analysis
(m—DI+(8Y/) (R,)"6Y/ =UDU" (Eigenvalue decomp.)

\\Xf’ =X/ +6X/[UD"'U" (8Y/ ) (R,)(y* — H,(X!)) ++/m—1UD""*U" ]




Derivation of LETKF egs.

I1-K H )X’ (X)T
= X/ (m=D[(m-DI+H,X/)" (R)"H,X/1"(X/)'

TT” = (m—-D[(m-DI+H,X/)" (R,)"H X/

_.Eigenvalue decomposition: UDU" :[mxm]
T=+m-1UD"?U"

K, = PiaHiTRi_l

K. =X/UD"'U" (H.6X!)' (R,)™

X! =X/ +K,(y; —H.(X/))+ X!
=X/ +6X/[UD'U" (H,6X))" (R) ' (y* — H.(X/ ) +Vm—-1UD"*U" ]




