

A Bayesian view of Data Assimilation and Quality Control of Observations

Lecture, Intensive Course on Data Assimilation

Andrew Lorenc, Buenos Aires, Argentina. October 27 - November 7, 2008

- 1. Bayes Theorem adding information
 - Gaussian PDFs
 - Non-Gaussian observational errors Quality Control
- 2. Simplest possible Bayesian NWP analysis
 - Two gridpoints, one observation.
- 3. Predicting the prior PDF
 - a Bayesian view of 4D-Var v Ensemble KF

Bayes Theorem – adding information

Gaussian PDFs

Non-Gaussian observational errors - Quality Control

Bayes' Theorem for Discrete Events

A B events

P(A) probability of A occurring, or

knowledge about A's past occurrence

 $P(A \cap B)$ probability that A and B both occur,

 $P(A \mid B)$ conditional probability of A given B

We have two ways of expressing $P(A \cap B)$:

$$P(A \cap B) = P(B) P(A \mid B) = P(A) P(B \mid A)$$

 \Rightarrow Bayes' Theorem: $P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)}$

Can calculate P(B) from: $P(B) = P(B \mid A)P(A) + P(B \mid \overline{A})P(\overline{A})$

Bayes theorem in continuous form, to estimate a value x given an observation y^o

$$p(x \mid y^{o}) = \frac{p(y^{o} \mid x)p(x)}{p(y^{o})}$$

$$p(x | y^o)$$
 is the posterior distribution,
 $p(x)$ is the prior distribution,
 $p(y^o | x)$ is the likelihood function for x

Can get $p(y^o)$ by integrating over all x: $p(y^o) = \int p(y^o | x)p(x)dx$

Assume Gaussian pdfs

Prior is Gaussian with mean x^b , variance V_b :

$$x \sim N(x^b, V_b)$$

$$p(x) = (2\pi V_b)^{-\frac{1}{2}} \exp\left(-\frac{1}{2} \frac{(x - x^b)^2}{V_b}\right)$$

Ob y^o , Gaussian about true value x variance V_o : $y^o \sim N(x,V_o)$

$$p(y^{o}|x) = (2\pi V_{o})^{-\frac{1}{2}} \exp\left(-\frac{1}{2} \frac{(y^{o} - x)^{2}}{V_{o}}\right)$$

Substituting gives a Gaussian posterior:

$$x \sim N(x^a, V_a)$$

$$p(x) = (2\pi V_a)^{-\frac{1}{2}} \exp\left(-\frac{1}{2} \frac{(x - x^a)^2}{V_a}\right)$$

Advantages of Gaussian assumption

1. Best estimate is a found by solving linear equations:

$$\frac{1}{V_a} = \frac{1}{V_o} + \frac{1}{V_b} \qquad \frac{1}{V_a} x^a = \frac{1}{V_o} y^o + \frac{1}{V_b} x^b$$
$$p(x) = (2\pi V_a)^{-\frac{1}{2}} \exp\left(-\frac{1}{2} \frac{(x - x^a)^2}{V_a}\right)$$

Taking logs gives quadratic equation; differentiating to find extremum gives linear equation.

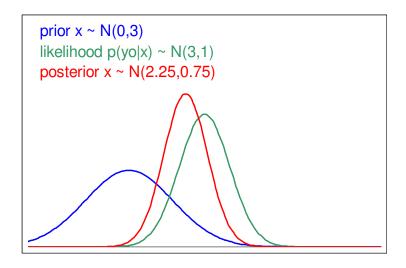
2. Best estimate is a function of values & [co-]variances only.

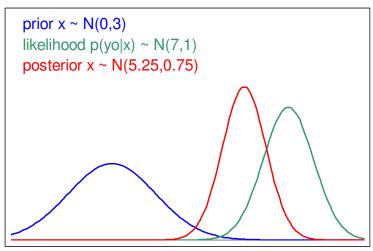
Often these are all we know.

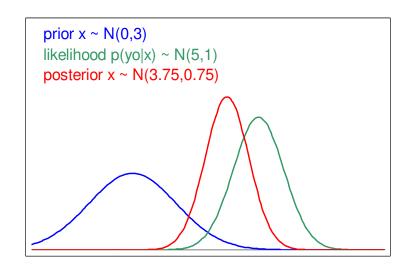
3. Weights are independent of values.

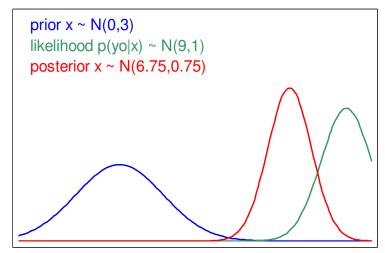
Combination of Gaussian prior & observation

- Gaussian posterior,
- weights independent of values.









Discrete Bayes Theorem Applied to Gross Observational Errors

I have two dice. One is weighted towards throwing sixes. I have performed some experiments with them, and have the prior statistics that:

```
for the weighted (W) die, P(6|W) = 58/60
for the good (G) die, P(6|G) = 10/60
```

I choose one at random: $P(W) = P(G) = \frac{1}{2} = 50\%$ I throw this die, and it shows a six. Now:-

$$P(6)$$
 = $P(6|W) P(W) + P(6|G) P(G)$
= $58/60 1/2 + 10/60 1/2$
= $34/60$

We can now apply Bayes' Theorem:

$$P(G|6)$$
 = $P(6|G) P(G) / P(6)$
= $10/60 1/2 / 34/60 = 5/34 = 15\%$
 $P(W|6)$ = $P(6|W) P(W) / P(6)$
= $58/60 1/2 / 34/60 = 29/34 = 85\%$

Met Office

Simple model for PDF of observations with errors

Assume that a small fraction of the observations are corrupted, and hence worthless. The others have Gaussian errors.

For each observation we have:

$$p(y^{\circ}|x) = p(y^{\circ}|G \cap x)P(G) + p(y^{\circ}|\overline{G} \cap x)P(\overline{G})$$

 \overline{G} is the event "there is a gross error" and \overline{G} means $not\ G$.

$$p(y^{o}|\overline{G} \cap x) = N(y^{o}|H(x), E+F)$$

$$p(y^{o}|G \cap x) = \begin{cases} k & \text{over the range of plausible values} \\ 0 & \text{elsewhere} \end{cases}$$

Applying this model

· Can simply apply Bayes Theorem to the discrete event G

$$P(G | y^{o}) = \frac{P(y^{o} | G)P(G)}{P(y^{o})}$$

$$= \frac{k P(G)}{k P(G) + N(y^{o}|H(x^{b}), \mathbf{R} + H\mathbf{B}H^{T})P(\overline{G})}$$

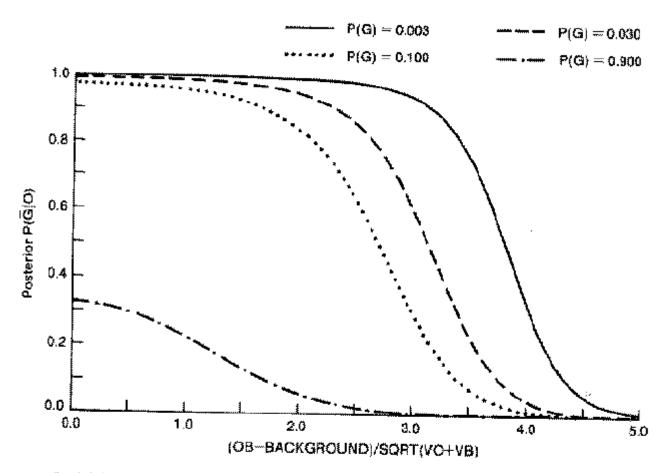
Lorenc, A.C. and Hammon, O., 1988: "Objective quality control of observations using Bayesian methods. Theory, and a practical implementation." *Quart. J. Roy. Met. Soc.*, **114**, 515-543

• Or we can use the non-Gaussian PDF_directly $p(y^{\circ}|x) = p(y^{\circ}|G \cap x)P(G) + p(y^{\circ}|G \cap x)P(G)$

Ingleby, N.B., and Lorenc, A.C. 1993: "Bayesian quality control using multivariate normal distributions". *Quart. J. Roy. Met. Soc.*, **119**, 1195-1225

Andersson, Erik and Jarvinen, Heikki. 1999: "Variational Quality Control" *Quart. J. Roy. Met. Soc.*, **125**, © Crown copyright Met Office Andrew Lorenc 11

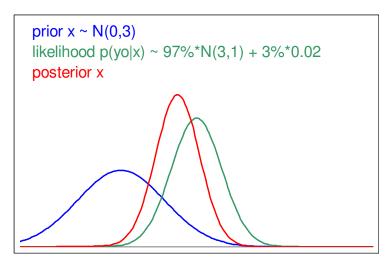
Posterior probability that an observation is "correct", as a function of its deviation from the background forecast

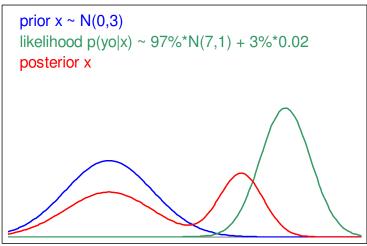


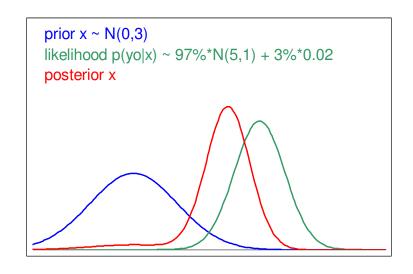
Posterior probability of an observation not having a gross error, plotted against normalized observed minus background value, for various prior probabilities of gross error.

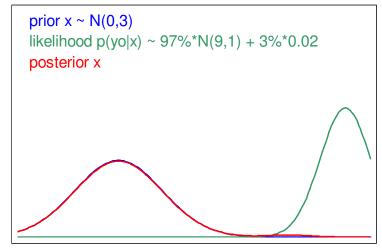
S OTOWIT COPYTIGHT INICE OFFICE ANICHOW ECTORS IL

Gaussian prior combined with observation with gross errors - extreme obs are rejected.



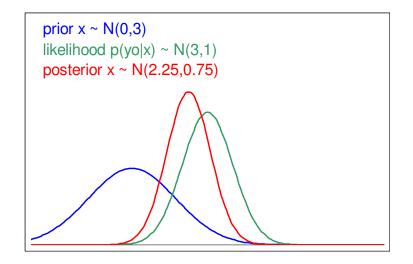


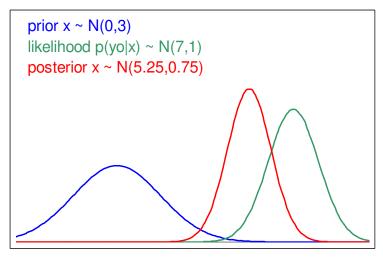


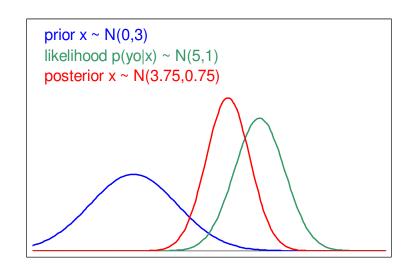


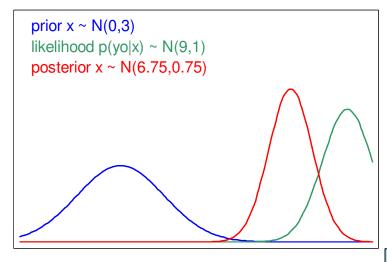
Combination of Gaussian prior & observation

- Gaussian posterior,
- weights independent of values.





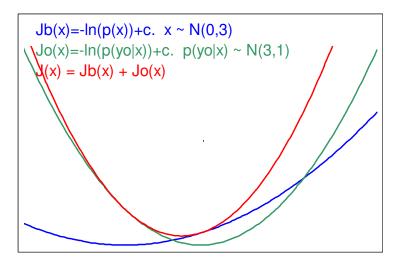


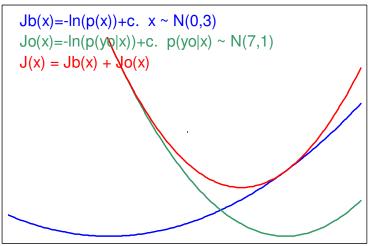


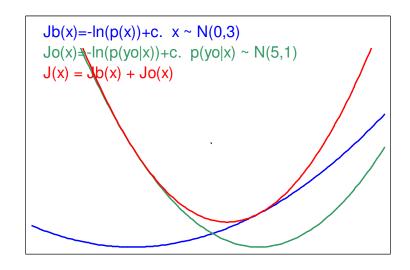
Variational Penalty Functions

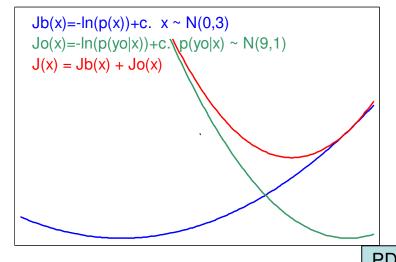
- Finding the most probable posterior value involves maximising a product [of Gaussians]
- By taking -ln of the posterior PDF, we can instead minimise a sum [of quadratics]
- ullet This is often called the "Penalty Function" J
- Additive constants can be ignored

Penalty functions: $J(x) = -\ln(p(x)) + c$ p Gaussian $\Rightarrow J$ quadratic

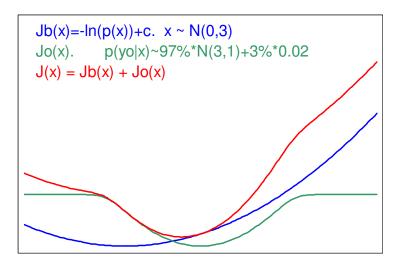


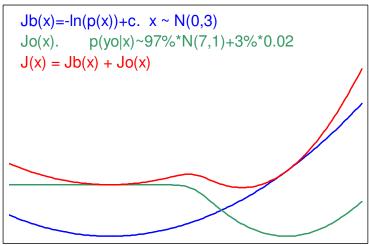


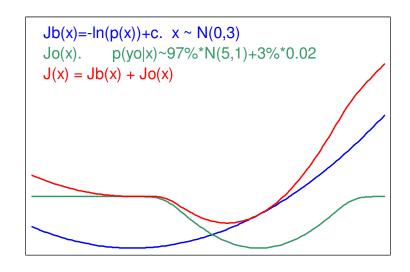


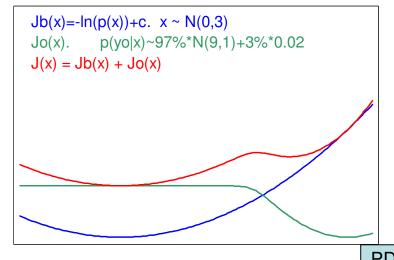


Penalty functions: $J(x) = -\ln(p(x)) + c$ p non-Gaussian $\Rightarrow J$ non-quadratic

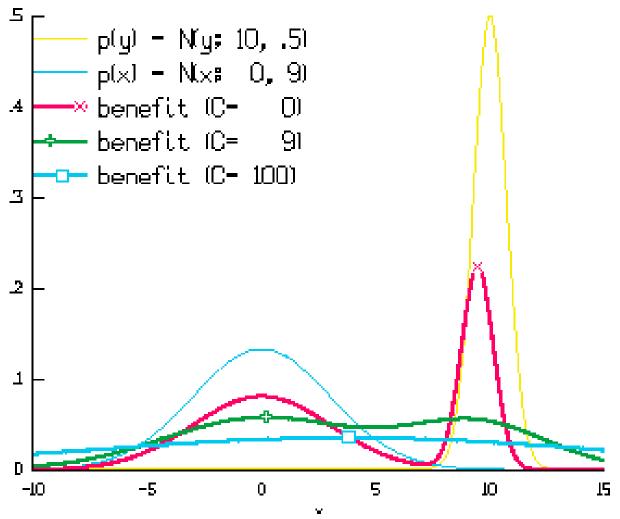








Prior probability of gross error PGI= JJ5 Posterior probability of gross error PGIy= J61



Lorenc, A. C., 2002: Atmospheric Data Assimilation and Quality Control. *Ocean Forecasting*, eds Pinardi & Woods. ISBN 3-540-67964-2. 73-96

Expected benefit as a function of analysed value. Curves are plotted for three different benefit functions, with widths C=0 (maximum at X), C=9 (maximum at +), C=100 (max at □). Shown for reference are

Shown for reference are the background pdf (with $x^b=0$, B=9), and the observational pdf (with $y^o=10$, R=0.5).

Other models for observation error

9

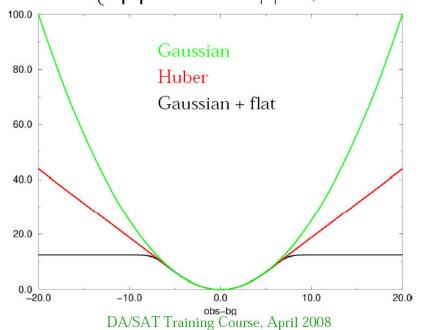
The Gaussian + flat distribution lead to a rather rapid rejection of observations with large deviations. This can cause problems:

- 1.When the guess is some way from the observation
- 2. When the observation is of (important) severe weather

Erik Andersson prefers a "Huber Norm" penalty function:

The Huber-norm – a compromise between the l_2 and l_1

 $p^{H} = \begin{cases} x^{2} / 2 & \text{if } |x| > k, \\ k |x| - k^{2} / 2 & \text{if } |x| > k, \end{cases}$



Simplest possible Bayesian NWP analysis

Simplest possible example – 2 grid-points, 1 observation. Standard notation:

Ide, K., Courtier, P., Ghil, M., and Lorenc, A.C. 1997: "Unified notation for data assimilation: Operational, Sequential and Variational" *J. Met. Soc. Japan*, Special issue "Data Assimilation in Meteorology and Oceanography: Theory and Practice." **75**, No. 1B, 181—189

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

1 observed value y^o midway (but use notation for >1):

$$\mathbf{y}^o = (y^o)$$

Can interpolate an estimate y of the observed value:

$$\mathbf{y} = H(\mathbf{x}) = \frac{1}{2} x_1 + \frac{1}{2} x_2 = \mathbf{H} \mathbf{x} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

This example *H* is linear, so we can use matrix notation for fields as well as increments.

background pdf

We have prior estimate x^{b_1} with error variance V_{b} :

$$p(x_1) = (2\pi V_b)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x_1 - x_1^b)^2 / V_b\right)$$
$$p(x_2) = (2\pi V_b)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x_2 - x_2^b)^2 / V_b\right)$$

But errors in x_1 and x_2 are usually correlated \Rightarrow must use a multi-dimensional Gaussian:

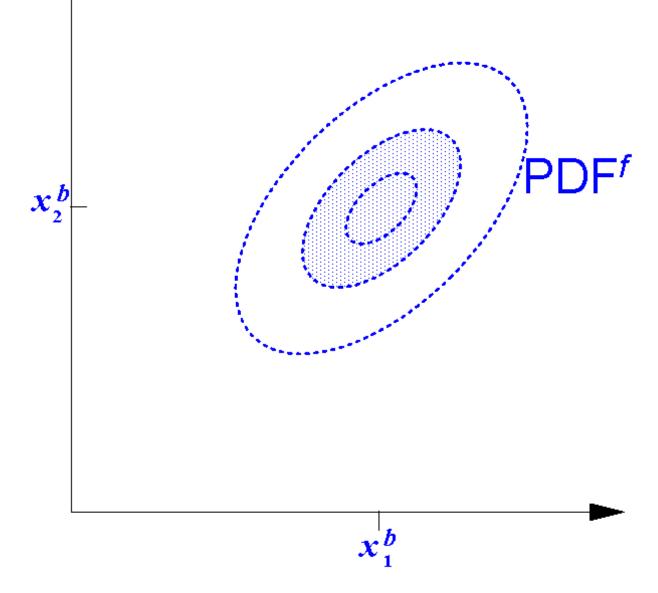
$$\mathbf{x} \sim N(\mathbf{x}: \mathbf{x}^b, \mathbf{B})$$

$$p(\mathbf{x}_1 \cap \mathbf{x}_2) = p(\mathbf{x}) = ((2\pi)^2 |\mathbf{B}|)^{\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{x}^b)^T \mathbf{B}^{-1}(\mathbf{x} - \mathbf{x}^b)\right)$$

where **B** is the covariance matrix:

$$\mathbf{B} = V_b \begin{pmatrix} 1 & \mu \\ \mu & 1 \end{pmatrix}$$

background pdf



Observational errors

Lorenc, A.C. 1986: "Analysis methods for numerical weather prediction." *Quart. J. Roy. Met. Soc.*, **112**, 1177-1194.

instrumental error

$$\mathbf{y}^{o} \sim N(\mathbf{y}^{t}, \mathbf{E})$$

$$p(\mathbf{y}^{o} \mid \mathbf{y}^{t}) = (2\pi |\mathbf{E}|)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{y}^{o} - \mathbf{y}^{t})^{T} \mathbf{E}^{-1}(\mathbf{y}^{o} - \mathbf{y}^{t})\right)$$

error of representativeness

$$\mathbf{y} \sim N(H(\mathbf{x}^t), \mathbf{F})$$

$$p_{t}(\mathbf{y}|\mathbf{x}^{t}) = (2\pi|\mathbf{F}|)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{y} - H(\mathbf{x}^{t}))^{T} \mathbf{F}^{-1}(\mathbf{y} - H(\mathbf{x}^{t}))\right)$$

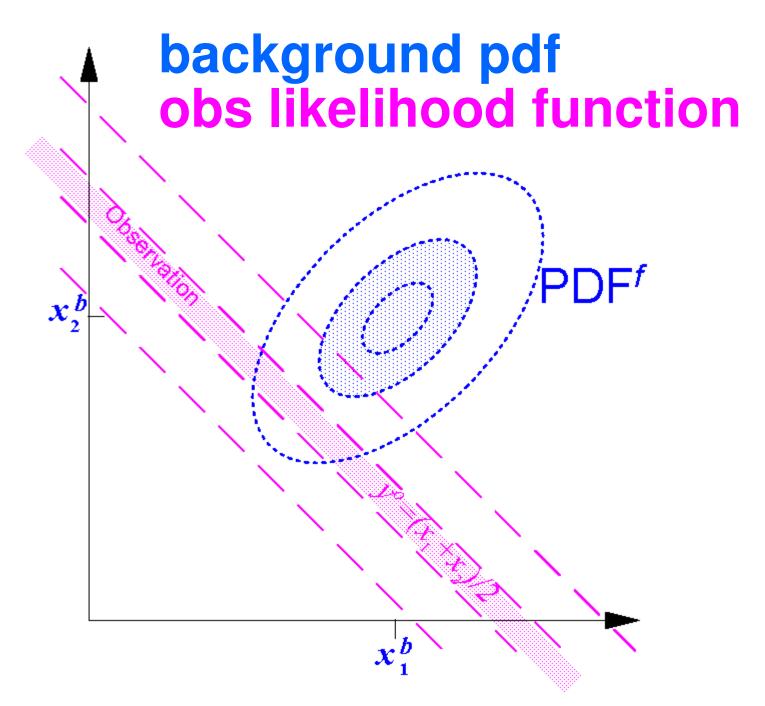
Observational error

combines these 2:

$$\mathbf{y}^{o} \sim N(H(\mathbf{x}^{t}), \mathbf{E} + \mathbf{F})$$

$$p(\mathbf{y}^{o}|\mathbf{x}^{t}) = \int p(\mathbf{y}^{o}|\mathbf{y}) p_{t}(\mathbf{y}|\mathbf{x}^{t}) d\mathbf{y}$$

$$= (2\pi |\mathbf{E} + \mathbf{F}|)^{-\frac{1}{2}} \exp\left(-\frac{1}{2} \left(\mathbf{y}^o - H(\mathbf{x}^t)\right)^T \left(\mathbf{E} + \mathbf{F}\right)^{-1} \left(\mathbf{y}^o - H(\mathbf{x}^t)\right)\right)$$

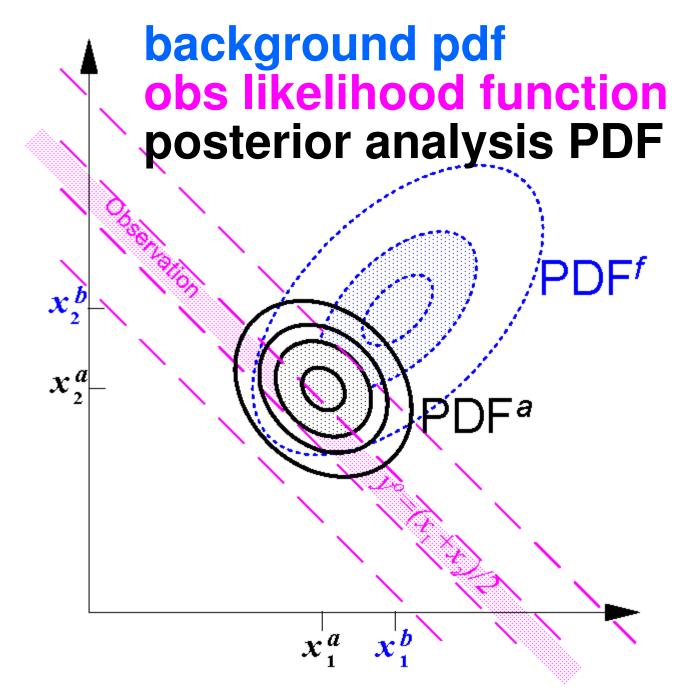


Bayesian analysis equation

$$p(\mathbf{x}|\mathbf{y}^{o}) = \frac{p(\mathbf{y}^{o}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{y}^{o})}$$

Property of Gaussians that, if *H* is linearisable : $\mathbf{x} \sim N(\mathbf{x}^a, \mathbf{A})$

where \mathbf{x}^a and \mathbf{A} are defined by: $\mathbf{A}^{-1} = \mathbf{B}^{-1} + \mathbf{H}^T (\mathbf{E} + \mathbf{F})^{-1} \mathbf{H}$ $\mathbf{x}^a = \mathbf{x}^b + \mathbf{A} \mathbf{H}^T (\mathbf{E} + \mathbf{F})^{-1} (\mathbf{y}^o - H(\mathbf{x}^b))$



Analysis equation

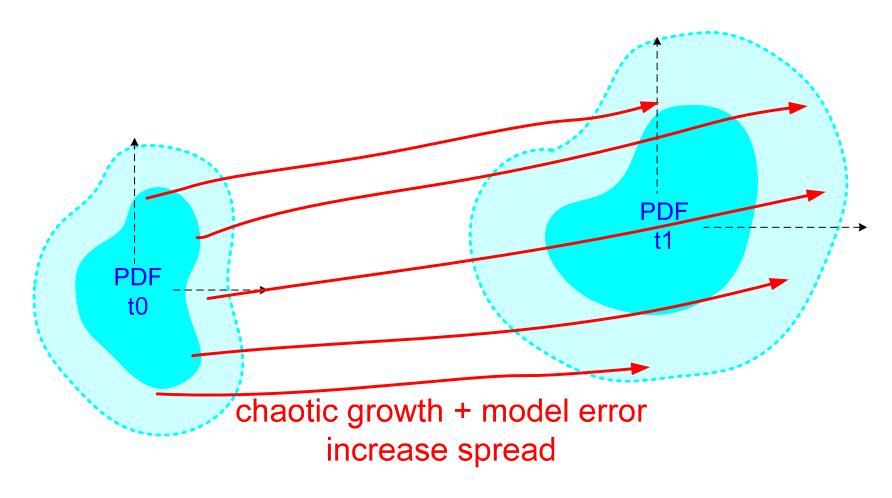
For our simple example the algebra is easily done by hand, giving:

$$\mathbf{x}^{a} = \begin{pmatrix} x_{1}^{a} \\ x_{2}^{a} \end{pmatrix} = \begin{pmatrix} x_{1}^{b} \\ x_{2}^{b} \end{pmatrix} + \frac{\left(V^{b}\left(\frac{1+\mu}{2}\right)\right)^{2}}{\mathbf{E} + \mathbf{F} + V^{b}\left(\frac{1+\mu}{2}\right)} \begin{bmatrix} y^{o} - \frac{x_{1}^{b} + x_{2}^{b}}{2} \end{bmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

How to estimate the prior PDF? How to calculate its time evolution?

i.e. 4D-Var Versus Ensemble KF

Fokker-Planck Equation

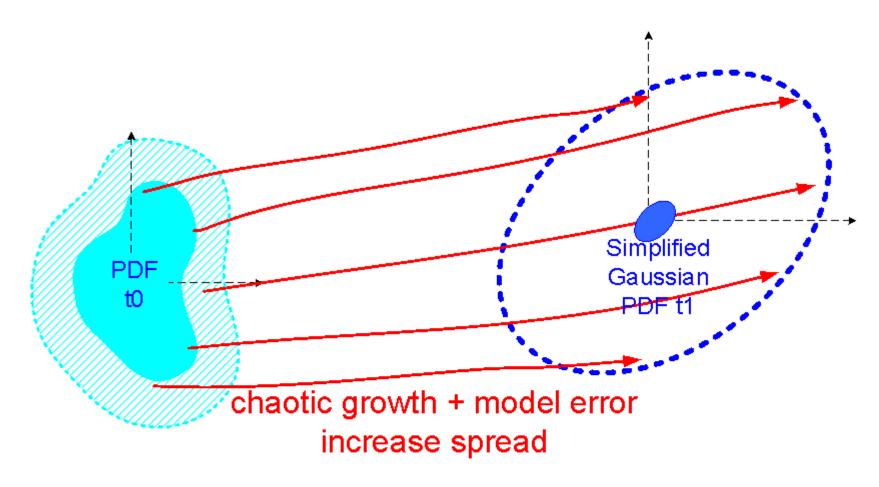


Ensemble methods attempt to sample entire PDF.

Gaussian Probability Distribution Functions

- Easier to fit to sampled errors.
- Quadratic optimisation problems, with linear solution methods – much more efficient.
- The Kalman filter is optimal for linear models, but
 - it is not affordable for expensive models (despite the "easy" quadratic problem)
 - it is not optimal for nonlinear models.
- Advanced methods based on the Kalman filter can be made affordable:
 - Ensemble Kalman filter (EnKF, ETKF, ...)
 - Four-dimensional variational assimilation (4D-Var)

Ensemble Kalman filter



Fit Gaussian to forecast ensemble.

The Ensemble Kalman Filter (EnKF)

Construct an ensemble $\{\mathbf{x}_{i}^{f}\}, (i = 1, ..., N)$:

$$\mathbf{P}^f = \mathbf{P}_e^f = \left(\mathbf{x}^f - \overline{\mathbf{x}^f}\right) \left(\mathbf{x}^f - \overline{\mathbf{x}^f}\right)^T,$$

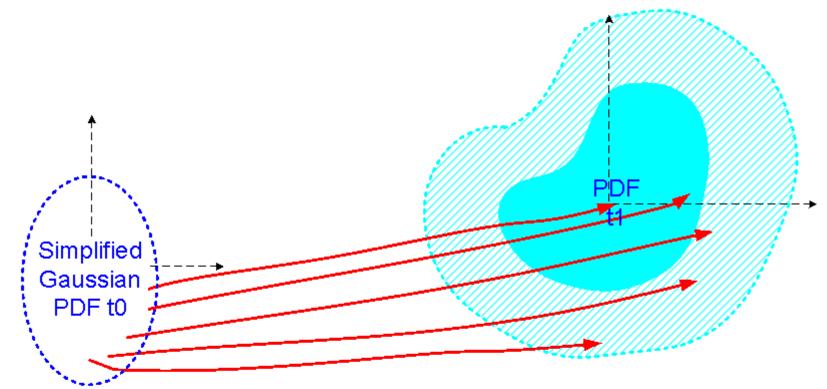
$$\mathbf{P}^{f}\mathbf{H}^{T} = \left(\mathbf{x}^{f} - \overline{\mathbf{x}^{f}}\right) \left(H\left(\mathbf{x}^{f}\right) - \overline{H\left(\mathbf{x}^{f}\right)}\right)^{T},$$

$$\mathbf{H}\mathbf{P}^{f}\mathbf{H}^{T} = \left(H\left(\mathbf{x}^{f}\right) - \overline{H\left(\mathbf{x}^{f}\right)}\right)\left(H\left(\mathbf{x}^{f}\right) - \overline{H\left(\mathbf{x}^{f}\right)}\right)^{T}$$

Use these in the standard KF equation to update the best estimate (ensemble mean):

$$\overline{\mathbf{x}^{a}} = \overline{\mathbf{x}^{f}} + \mathbf{P}^{f} \mathbf{H}^{T} \left(\mathbf{H} \mathbf{P}^{f} \mathbf{H}^{T} + \mathbf{R} \right)^{-1} \left(\mathbf{y}^{o} - H \left(\overline{\mathbf{x}^{f}} \right) \right).$$

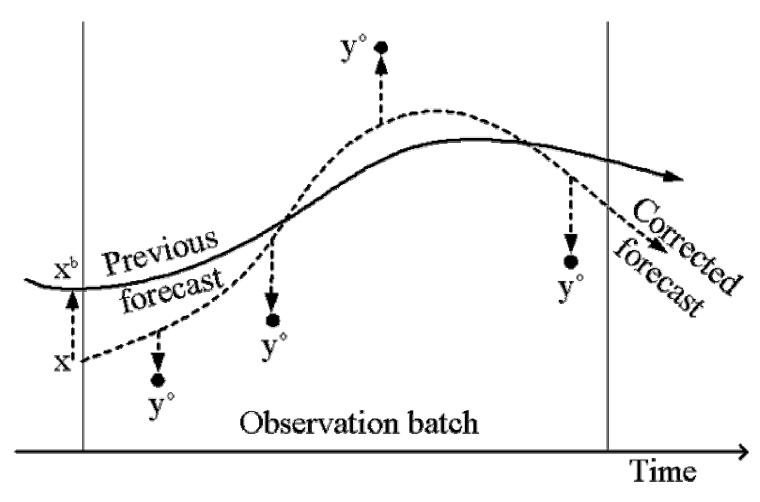
Deterministic 4D-Var



Initial PDF is approximated by a Gaussian.

Descent algorithm only explores a small part of the PDF, on the way to a local minimum.

Simple 4D-Var, as a least-squares best fit of a deterministic model trajectory to observations



Assumptions in deriving deterministic 4D-Var

Bayes Theorem - posterior PDF: $P(x|y^{\circ})$

$$P(x|y^{\circ}) = P(y^{\circ}|x)P(x)/P(y^{\circ})$$

where the obs likelihood function is given by:

$$P(y^{\circ}|x) = f(y^{\circ} - y)$$
, where $y = H(x)$

Impossible to evaluate the integrals necessary to find "best".

Instead assume best *x* maximises PDF, and minimises -In(PDF):

$$J(x) = -\ln \left[P(y^{\circ}|x) \right] - \ln \left[P(x) \right]$$

Purser, R.J. 1984: "A new approach to the optimal assimilation of meteorological data by iterative Bayesian analysis". Preprints, 10th conference on weather forecasting and analysis. Am Met Soc. 102-105

Lorenc, A.C. 1986: "Analysis methods for numerical weather prediction." Quart. J. Roy. Met. Soc., 112, 1177-1194.

© Crown copyright Met Office

The deterministic 4D-Var equations

$$P(\mathbf{x}|\underline{\mathbf{y}}^{o}) \propto P(\mathbf{x})P(\underline{\mathbf{y}}^{o}|\mathbf{x})$$

Bayesian posterior pdf.

Assume Gaussians

$$P(\mathbf{x}) \propto \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{x}^b)^T \mathbf{B}^{-1}(\mathbf{x} - \mathbf{x}^b)\right)$$

$$P(\underline{\mathbf{y}}^{o}|\mathbf{x}) = P(\underline{\mathbf{y}}^{o}|\underline{\mathbf{y}}) \propto \exp\left(-\frac{1}{2}(\underline{\mathbf{y}} - \underline{\mathbf{y}}^{o})^{T} \underline{\mathbf{R}}^{-1}(\underline{\mathbf{y}} - \underline{\mathbf{y}}^{o})\right)$$

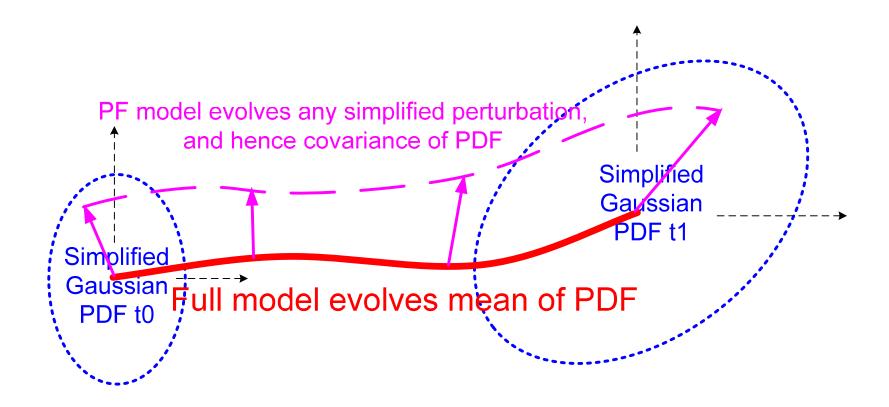
But nonlinear model makes pdf non-Gaussian: full pdf is too complicated to be allowed for.

$$\underline{\mathbf{y}} = \underline{H}\left(\underline{M}\left(\mathbf{x}\right)\right)$$

So seek mode of pdf by finding minimum of penalty function $J(\mathbf{x}) = \mathbf{x}$

$$J(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}^b)^T \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}^b) + \frac{1}{2} (\underline{\mathbf{y}} - \underline{\mathbf{y}}^o)^T \underline{\mathbf{R}}^{-1} (\underline{\mathbf{y}} - \underline{\mathbf{y}}^o)$$
$$\nabla_{\mathbf{x}} J(\mathbf{x}) = \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}^b) + \underline{\mathbf{M}}^* \underline{\mathbf{H}}^* \mathbf{R}^{-1} (\mathbf{y} - \mathbf{y}^o)$$

Statistical, incremental 4D-Var



Statistical 4D-Var approximates entire PDF by a Gaussian.

Statistical 4D-Var - equations

Independent, Gaussian P(background and model errors \Rightarrow non-Gaussian pdf for general \mathbf{y} :

Incremental linear approximations in forecasting model predictions of observed values converts this to an approximate Gaussian pdf:

The mean of this approximate pdf is identical to the mode, so it can be found by minimising:

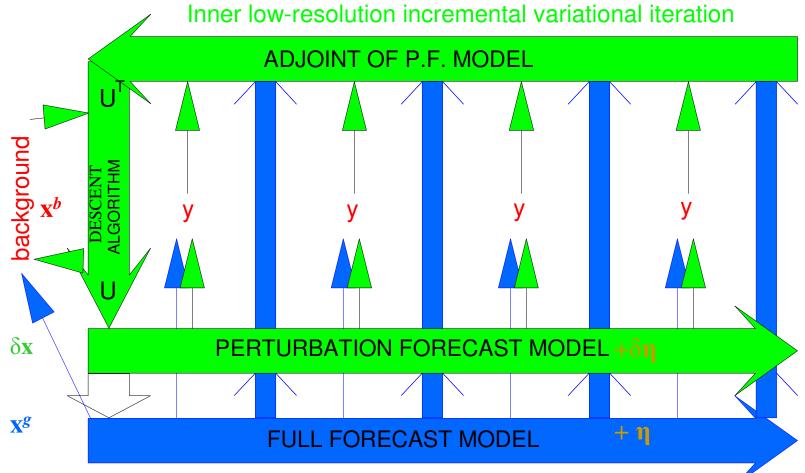
$$P(\delta \mathbf{x}, \delta \underline{\mathbf{\eta}} | \underline{\mathbf{y}}^{o}) \propto \exp\left(-\frac{1}{2} \left(\delta \mathbf{x} - \left(\mathbf{x}^{b} - \mathbf{x}^{g}\right)\right)^{T} \mathbf{B}^{-1} \left(\delta \mathbf{x} - \left(\mathbf{x}^{b} - \mathbf{x}^{g}\right)\right)\right)$$
odf
$$\exp\left(-\frac{1}{2} \left(\delta \underline{\mathbf{\eta}} + \underline{\mathbf{\eta}}^{g}\right)^{T} \mathbf{Q}^{-1} \left(\delta \underline{\mathbf{\eta}} + \underline{\mathbf{\eta}}^{g}\right)\right)$$

$$\exp\left(-\frac{1}{2} \left(\underline{\mathbf{y}} - \underline{\mathbf{y}}^{o}\right)^{T} \mathbf{R}^{-1} \left(\underline{\mathbf{y}} - \underline{\mathbf{y}}^{o}\right)\right)$$

$$\mathbf{y} = \underline{\tilde{\mathbf{H}}}\underline{\tilde{\mathbf{M}}}\left(\boldsymbol{\delta}\mathbf{x}, \boldsymbol{\eta}\right) + \underline{H}\left(\underline{M}\left(\mathbf{x}^{g}, \boldsymbol{\eta}^{g}\right)\right)$$

$$J\left(\boldsymbol{\delta}\mathbf{x}, \boldsymbol{\delta}\underline{\boldsymbol{\eta}}\right) = \frac{1}{2} \left(\boldsymbol{\delta}\mathbf{x} - \left(\mathbf{x}^{b} - \mathbf{x}^{g}\right)\right)^{T} \mathbf{B}^{-1} \left(\boldsymbol{\delta}\mathbf{x} - \left(\mathbf{x}^{b} - \mathbf{x}^{g}\right)\right)$$
$$+ \frac{1}{2} \left(\boldsymbol{\delta}\underline{\boldsymbol{\eta}} + \underline{\boldsymbol{\eta}}^{g}\right)^{T} \mathbf{Q}^{-1} \left(\boldsymbol{\delta}\underline{\boldsymbol{\eta}} + \underline{\boldsymbol{\eta}}^{g}\right)$$
$$+ \frac{1}{2} \left(\underline{\mathbf{y}} - \underline{\mathbf{y}}^{o}\right)^{T} \mathbf{R}^{-1} \left(\underline{\mathbf{y}} - \underline{\mathbf{y}}^{o}\right)$$

Incremental 4D-Var with Outer Loop



Outer, full-resolution iteration Optional model error terms

Questions and answers

- 1. Bayes Theorem adding information
 - Gaussian PDFs
 - Non-Gaussian observational errors Quality Control
- 2. Simplest possible Bayesian NWP analysis
 - Two gridpoints, one observation.
- 3. Predicting the prior PDF
 - a Bayesian view of 4D-Var v Ensemble KF