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Bayes Theorem — adding information

Gaussian PDFs
Non-Gaussian observational errors - Quality Control
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Bayes' Theorem for Discrete Events

Met Office
A B events
P(A) probability of A occurring, or
knowledge about A's past occurrence
P(ANB) probability that A and B both occur,
P(A|B) conditional probability of A given B

We have two ways of expressing P(ANB):
P(ANB)= P(B)P(A| B)= P(A) P(B| A)

P(BIA) P(A)
P(B)

= Bayes' Theorem: P(AlB)=

Can calculate P(B) from: P(B)= P(BI A)P(A)+ P(BI A)P(A)
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Bayes theorem in continuous form,
Metofice 1O €Stimate a value x given an observation y°

p(y" 1 x)p(x)

p(x1y”)= y
p(y’)
p(xl y°) IS the posterior distribution,
p(x) IS the prior distribution,
p(y° |x) Is the likelihood function for x

Can get p(y°) by integrating over all x: p(¥*)=1p( y"1x)p(x)dx
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Assume Gaussian pdfs

Met Office
Prior is Gaussian with mean x*, variance V, : x~N(x"vV,)
i 1 (x- by
p(x)=(27v,)exp| - Lk 2,
2V,

Ob y°, Gaussian about true value x variance V. : y° ~ N(x,V,)

1(y'-x)
2 Vv,

p(y'lx)= Czvy,)” exp(-

Substituting gives a Gaussian posterior: x~N (x“,Va)

p(x)= (275Va)'5€Xp£- Lx-x") j
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Advantages of Gaussian
Metofice ASSUMPTION

1. Best estimate is a found by solving linear equations:

1 1 1 | 1, 1,
= + —Xx =Yy *t—x
V. V. V, V. Vo Vo
v I(x-5)
p(x)=(27rva)zeXp[-—( ad )j
2 Vv,

Taking logs gives quadratic equation; differentiating to find extremum gives linear equation.

2. Best estimate is a function of values & [co-]variances only.

Often these are all we know.

3. Weights are independent of values.
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Combination of Gaussian prior & observation
- Gaussian posterior,

MetOffice - wWeights independent of values.

prior x ~ N(0,3)
likelihood p(yo|x) ~ N(3,1)
posterior x ~ N(2.25,0.75)

prior x ~ N(0,3)
likelihood p(yo|x) ~ N(5,1)
posterior x ~ N(3.75,0.75)

prior x ~ N(0,3)
likelihood p(yo|x) ~ N(7,1)
posterior x ~ N(5.25,0.75)

prior x ~ N(0,3)
likelihood p(yol|x) ~ N(9,1)
posterior x ~ N(6.75,0.75)
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Quality Control example:
vetomee BAYESIAN Dice

Discrete Bayes Theorem Applied to Gross Observational Errors

| have two dice. One is weighted towards throwing sixes. | have performed
some experiments with them, and have the prior statistics that:

for the weighted (W) die, P(6|W) = 58/60

for the good (@) die, P6|G) =10/60

| choose one at random: P(W) = P(G) = Y2 = 50%
| throw this die, and it shows a six. Now:-
P(6) = P(6|W) P(W) +P(6|G) P(G
=58/60 1/2 + 10/60 1/2
= 34/60
We can now apply Bayes' Theorem:

P(G|l6) = P(6|G) P(G)/ P(6)
=10/60 1/2 /34/60 = 5/34 =15%
P(WV6) = P(6|W) P(W) / P(6)

58/60 1/2 /34/60 =29/34 = 85%
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Simple model for PDF of
weromee ODSErvations with errors

Assume that a small fraction of the observations are corrupted, and hence
worthless. The others have Gaussian errors.

For each observation we have:
p(yolx) = p(yOIG mx)P(G) + p(yo G mx)P(E)
- is the event "there is a gross error" and G means not G.

p("IG A x) = Ny 1H(x),E+ F)
., k over therange of plausible values
P16 Nx) ={

0 elsewhere
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Applying this model

Met Office
« Can simply apply Bayes Theorem to the discrete event G
P{y’1G)P(G)

Pl1)- Ply’)

~ k P(G)
~ kP(G)+ NyIH(x")R+HBH" ) P(G)

Lorenc, A.C. and Hammon, O., 1988: "Objective quality control of observations using Bayesian
methods. Theory, and a practical implementation." Quart. J. Roy. Met. Soc., 114, 515-543

« Or we can use the non-Gaussian PDF _directly
pr(]yol)jz oy’ 1G ~x)P(G) + ply*1G A x)P(G)

Ingleby, N.B., and Lorenc, A.C. 1993: "Bayesian quality control using multivariate normal distributions".
Quart. J. Roy. Met. Soc., 119, 1195-1225

Andersson, Erik and Jarvinen, Heikki. 1999: "Variational Quality Control" Quart. J. Roy. Met. Soc., 125,
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Posterior probability that an observation is
“correct”, as a function of its deviation from
MetOffice the background forecast
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Gaussian prior combined with observation

with gross errors - extreme obs are rejected.

Met Office

prior X ~ N(0,3)
likelihood p(yo|x) ~ 97%*N(3,1) + 3%*0.02
posterior x

prior x ~ N(0,3)
likelihood p(yo|x) ~ 97%*N(5,1) + 3%*0.02
posterior x

prior x ~ N(0,3)
likelihood p(yol|x) ~ 97%*N(7,1) + 3%*0.02
posterior x

prior x ~ N(0,3)
likelihood p(yo|x) ~ 97%*N(9,1) + 3%*0.02
posterior x

N
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Combination of Gaussian prior & observation

- Gaussian posterior,

MetOffice - wWeights independent of values.

prior x ~ N(0,3)
likelihood p(yo|x) ~ N(3,1)
posterior x ~ N(2.25,0.75)

prior x ~ N(0,3)
likelihood p(yo|x) ~ N(5,1)
posterior x ~ N(3.75,0.75)

prior x ~ N(0,3)
likelihood p(yo|x) ~ N(7,1)
posterior x ~ N(5.25,0.75)

prior x ~ N(0,3)
likelihood p(yol|x) ~ N(9,1)
posterior x ~ N(6.75,0.75)
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Variational Penalty Functions

Met Office

* Finding the most probable posterior value involves
maximising a product [of Gaussians]

« By taking —In of the posterior PDF, we can instead
minimise a sum [of quadratics]

« This is often called the “Penalty Function” J

 Additive constants can be ignored
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Penalty functions: J(x) = -In(p(x))+cC

reome P GaUSsian = J quadratic

(p(x))+c. x~ N(0,3)
(p(yolx))+c. p(yolx) ~ N(3,1)

PDF
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Penalty functions: J(x) = -In(p(x))+cC
p non-Gaussian = J non-quadratic

Met Office
Jb(x)=-In(p(x))+c. x ~ N(0,3) Jb(x)=-In(p(x))+c. x ~ N(0,3)
Jo(x).  p(yolx)~97%*N(3,1)+3%*0.02 Jo(x).  p(yolx)~97%*N(5,1)+3%*0.02
J(X) = Jb(X) + Jo(x) J(x) = Jb(x) + Jo(X)

Jb(x)=-In(p(x))+c. x ~ N(0,3) Jb(x)=-In(p(x))+c. x ~ N(0,3)
Jo(x).  p(yo|x)~97%*N(7,1)+3%*0.02 Jo(x).  p(yo|x)~97%*N(9,1)+3%*0.02
J(x) = Jb(x) + Jo(x) J(x) = Jb(x) + Jo(x)

| . PDFS>
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Price probability of gross erroc Plisl= 5
Fosterior probabllity of grods error Fldye Sl

5 —

plyl = Mys 10, .5l
— plx] - Mg [, 9
4 = benefit, C= [
—— henetfLt [O= 4l

. = benetiLt [C= 100

15

Lorenc, A. C., 2002: Atmospheric Data Assimilation and Quality Control.
Ocean Forecasting, eds Pinardi & Woods. ISBN 3-540-67964-2. 73-96
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Expected benefit as a
function of analysed value.
Curves are plotted for
three different benefit
functions, with widths C=0
(maximum at X), C=9
(maximum at +), C=100
(max at L).
Shown for reference are
the background pdf

, and the
observational pdf



Other models for observation
Met Office errOr

The Huber-norm -
The Gaussian + flat distribution a compromise between the 1, and I, Mrmr

lead to a rather rapid rejection of w | x/z TRSE
observations with large PUTKIN =K 2 i sk
deviations. This can cause D
problems:

Huber

Gaussian + flat

1.When the guess is some way 00 |
from the observation

Jo

40.0

2.\When the observation is of
(important) severe weather

Erik Andersson prefers a “Huber = W w
Norm” penalty fu nCtiOn: DA/SAT Training Course, April 2008
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Simplest possible Bayesian NWP
analysis
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Simplest possible example — 2 grid-points,
1 observation. Standard notation:

Met Office  Ide, K, Courtier, P., Ghil, M., and Lorenc, A.C. 1997: "Unified notation for data
assimilation: Operational, Sequential and Variational" J. Met. Soc. Japan,
Special issue "Data Assimilation in Meteorology and Oceanography: Theory
and Practice." 75, No. 1B, 181—189

Model is two grid points: ~  _[ ™
Xy
1 observed value y> midway (but use notation for >1):  y* =(y")

Can interpolate an estimate y of the observed value:

Xy

This example H is linear, so

we can use matrix notation for
fields as well as increments.
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background pdf

Met Office
_L 2
We have prior estimate plx)=(27V,) ZCXP('%(% —X ) Vb)
b i i - i
X0, with error variance Vi ()= (22v,) Zexp(-g(xz - Vb)

But errors in x, and x, are usually correlated
= must use a multi-dimensional Gaussian:

p(xi0x:)= p(x)=(27) 1B |)%exp(-%(x x") B! (x- xb)j

1 u
where B is the covariance matrix: B =V{ j
u 1
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A background pdf

Met Office

[y
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Observational errors

Met Office Lorenc, A.C. 1986: "Analysis methods for numerical weather prediction."
Quart. J. Roy. Met. Soc., 112, 1177-1194.

instrumental error ¥’ - Ny-E) :
pb1y)=r ) expl 4y -y B -y)

error of representativeness y~N (H (xf)F)

p (o) = e exp -3 s~ ) ¥ by~ )

Observational error y' ~N (H (x’),E+F)
combines these 2 : p(yolxt _ jp(yoly)pt(ylxt)dy

(2nlE+F|)‘% expl (v’ Hx' ) (B+F)'(y'— H(x')

© Crown copyright Met Office Andrew Lor 24
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i background pdf
weone |« Obs likelihood function
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Bayesian analysis equation

Met Office
plxly’) = ply'1x)p(x)
ply’)
Property of Gaussians that, if H is linearisable :  x ~ N(x“,A)

where x« and A are defined by: A" =B” +H'(E+F) H
x*=x"+AH" (E+F)" (y‘) —~ H(Xb))

© Crown copyright Met Office Andrew Lorenc 26



background pdf
etort N obs likelihood function
el is PDF

| /PDF’
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Analysis equation

Met Office

For our simple example the algebra is easily done by hand, giving:
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How to estimate the prior PDF?
How to calculate its time evolution?

l.e. 4D-Var vesus Ensemble KF
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Fokker-Planck Equation

chaotic growth + model error
Increase spread

Ensemble methods attempt to sample entire PDF.
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Gaussian Probability
weromee D1STribution Functions

 Easier to fit to sampled errors.

« Quadratic optimisation problems, with linear solution
methods — much more efficient.

« The Kalman filter is optimal for linear models, but

* it is not affordable for expensive models (despite the “easy”
quadratic problem)

« it is not optimal for nonlinear models.

 Advanced methods based on the Kalman filter can
be made affordable:

« Ensemble Kalman filter (EnKF, ETKF, ...)

« Four-dimensional variational assimilation (4D-Var)
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Ensemble Kalman filter

o
NN

i T L

chaotic growth + model error
Increase spread

Fit Gaussian to forecast ensemble.
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The Ensemble Kalman Filter (EnKF)

Construct an ensemble {Xfr' }a (f = LmaN) :
Met Office

P/ = Pf :(xfmxf)(xfmxf)

P'H' = (xf —xf)(H(xf)—H(xf))?t

HP'H = (H(x~”)mH(Xf))(H(1’r)“H("f))r

Use these in the standard KF equation
to update the best estimate (ensemble mean):

x‘ =x’ +P/H' (HP'H" +R)’ (y” WH'(X_f))-




Deterministic 4D-Var

Met Office

F
|
|
|
.,.-L._
L4 | ™u
|
|
|

! simplified
i Gaussian ..
\ PDFt0 1

L L
- 'J‘
-

Initial PDF is approximated by a Gaussian.

Descent algorithm only explores a small part of the PDF,
on the way to a local minimum.
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Simple 4D-Var, as a least-squares best fit of a
deterministic model trajectory to observations
Met Office
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Assumptions in deriving

deterministic 4D-Var
Met Office

Bayes Theorem - posterior PDF:  p(x|y°) =P{yﬂ|x}P(‘x}/P{y"}

where the obs likelihood

on is qi P(y°|x)=f(y°-y), wh =H(
function is given by: (yolx)=fly®=y), where y=H(x)

Impossible to evaluate the
integrals necessary to find
“best”.

Instead assume best x | o |
maximises PDF, and J(X) =—|H[P{_V |f"‘*'_}] —In[P(x)]
minimises -In(PDF):

Purser, R.J. 1984: "A new approach to the optimal assimilation of meteorological data by iterative Bayesian analysis”.
Preprints, 10th conference on weather forecasting and analysis. Am Met Soc. 102-105

Lorenc, A.C. 1986: "Analysis methods for numerical weather prediction.” Quart. J. Roy. Met. Soc., 112, 1177-1194.
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he deterministic 4D-Var equations

Met Office
P(X 0) o P(X)P(yo X) Bayesian posterior pdf.
Assume P(X) a exp(——(x X )
Gaussians
P(y"|x)=P(y" _)°< eXP( Hy-y') R (y-y"))
But nonlinear model makes pdf non-Gaussian: Y= H (]\_4 (X))

full pdf is too complicated to be allowed for.
So seek mode of pdf by 1o Y B-1{w_ b L( _ 0) —1( _ 0)
finding minimum of J() 2(X X) B (X X)+2 Z y B X Z
1
y

penalty function
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Statistical, incremental 4D-Var

Met Office

...........
L d .~
LY

PF model evolves any simplified perturbatjgﬁ:' —
* and hence covariance of PDF .~ ~

;
. oor 1o Full model evolves mean of PDF

4
[
[
]
]

"
—'
ssss
®e -®
"ccasce"

S
.....

Statistical 4D-Var approximates entire PDF by a Gaussian.
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Statistical 4D-Var - equations

Met Office

T
Independent, Gaussian P(5x, 53@”) o exp(—%(&‘—(xb -x* )) B (5X—(Xb —x* )))
background and model
errors = non-Gaussian pdf exp|-%(dn+n*) Q'(6 +ﬂg))
for general y:

T
exp|-5(y-y') R (y-y’)
Incremental linear approximations
in forecasting model predictipns of y = HN_/I(5x,n)+E(1‘ZI (Xg’ng ))
observed values converts this to B -
an approximate Gaussian pdf:

The mean of this approximate pdf
is identical to the mode, so it can +1(on+n®) Q' (dn+n’)
be found by minimising: ( B
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| - Incremental 4D-Var with
il Outer Loop

Inner low-resolution incremental variational iteration

“ “

g 4

Outer, full-resolution iteration Optional model error terms

background

OX

X8
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Questions and answers
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