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ilation technique.

This method is of growing popularity and is now in
use in several major NWP centres.

Variational assimilation has been shown to yield
significant improvements in the quality of numerical
forecasts.

It has also been invaluable for re-analysis:
The ERA-40 Project at ECMWF was carried out
using the 3D-Var system.
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The Cost Function J
We saw, for the “two-temperature problem”, an impor-
tant equivalence between the least squares approach and
the variational approach.

The same equivalence holds for the full 3-dimensional case.

Lorenc (1986) showed that the OI solution is equivalent to a
specific variational assimilation problem: Find the optimal
analysis xa field that minimizes a (scalar) cost function.

The cost function is defined as the (weighted) distance be-
tween x and the background xb, plus the (weighted) distance
to the observations yo,:

J(x) = 1
2

{
(x− xb)

TB−1(x− xb) + [yo −H(x)]TR−1[yo −H(x)]
}

2



Schematic representation of the cost function in a simple

one-dimensional case. Jb and Jo respectively tend to pull the analysis

towards the background xb and the observation y.

c©“Data Assimilation Concepts and Methods” by F. Bouttier and P. Courtier (ECMWF)
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The minimum of J(x) is attained for x = xa such that

∂J

∂x
= ∇xJ(xa) = 0 (n× 1)

Assuming the analysis is close to the truth, we write

x = [xb + (x− xb)]

and assume that x− xb is small.

Then we can linearize the observation operator:

[yo −H(x)] = yo −H [xb + (x− xb)] = {yo −H(xb)} −H·(x− xb)

We now substitute this into the cost function:

J(x) = 1
2

{
(x− xb)

TB−1(x− xb) + [yo −H(x)]TR−1[yo −H(x)]
}
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The result is:

2J(x) = (x− xb)
TB−1(x− xb)

+
[
{yo −H(xb)} −H(x− xb)

]T
R−1[ {yo −H(xb)} −H(x− xb)

]
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2J(x) = (x− xb)
TB−1(x− xb) + (x− xb)

THTR−1H(x− xb)

− {yo −H(xb)}TR−1H(x− xb)

− (x− xb)
THTR−1{yo −H(xb)}

+ {yo −H(xb)}TR−1{yo −H(xb)}

The cost function is a quadratic function of the analysis
increments (x− xb).
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Schematic of the cost function in two dimensions. The minimum is

found by moving down-gradient in discrete steps.

c©“Data Assimilation Concepts and Methods” by F. Bouttier and P. Courtier (ECMWF)
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We need to compute the gradient of J.

We use the following Lemma:

Given a quadratic function F (x) = 1
2x

TAx + dTx + c, where
A is a symmetric matrix, d is a vector and c a scalar, the
gradient is given by ∇F (x) = Ax + d.

? ? ?

Proof:

F (x) =
1

2

∑
i

∑
j

Aijxixj +
∑

i

dixi + c

So the derivative w.r.t. xk is

∂F

∂xk
=

1

2

∑
j

Akjxj +
1

2

∑
j

Aikxi + dk =
∑
j

Akjxj + dk

Q.E.D.
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2J(x) = (x− xb)
T [B−1 + HTR−1H](x− xb)

− {yo −H(xb)}TR−1H(x− xb)

− (x− xb)
THTR−1{yo −H(xb)}

+ {Term independent of x}

The gradient of the cost function J with respect to x is

∇J(x) = [B−1 + HTR−1H](x− xb)−HTR−1{yo −H(xb)}
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obtain an equation for (xa − xb)[
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]
(xa − xb) = HTR−1{yo −H(xb)}

We can write this as:

xa = xb +
[
B−1 + HTR−1H

]−1
HTR−1{yo −H(xb)}

This is the solution of the 3-dimensional variational
(3D-Var) analysis problem.

It looks similar to the OI result, but the weight matrix is

W = [B−1 + HTR−1H
]−1

HTR−1

The equivalence is not obvious.
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Simple demo of equivalence of 3D-Var and OI
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Again, the variational analysis is

xa = xb +
[
B−1 + HTR−1H

]−1
HTR−1{yo −H(xb)}

It is a formal solution: the computation xa requires the
inversion of a huge matrix, which is impractical.

In practice the solution is obtained through minimization
algorithms for J(x) using iterative methods for minimization
such as the conjugate gradient or quasi-Newton methods.

Note that the control variable for the minimization is now
the analysis, not the weights as in OI.

The equivalence between the minimization of the analysis
error variance and the three-dimensional variational cost
function approach is an important property.
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Conclusion of the foregoing
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Minimization
In practical 3D-Var, we do not invert a huge matrix.

We find the minimum of J(x) by computing the cost func-
tion for a range of values of x and using an optimization
technique.

The idea is to “proceed downhill” as quickly as possible.

Examples are the Steepest Descent algorithm, Newton’s
method, and the Conjugate Gradient algorithm.

For a selection of techniques, see Numerical Recipes, which
may be inspected online before purchase.
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The location of the minimum depends greatly on the nature
of the function J.

As an example, for two dimensions, we consider the shape
of the “surface” J = J(x, y).

For a purely elliptic surface, the minimum is easily located.

For a banana shaped surface, the minimum is much harder to find.
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The “narrow-valley” effect. The minimization can spend many

iterations zigzagging towards the minimum.

c©“Data Assimilation Concepts and Methods” by F. Bouttier and P. Courtier (ECMWF)
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c©“Data Assimilation” by Alan O’Neill (Reading University)
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JB: The Conventional Method

Typical “structure function” used in OI. The autocorelation of height

is an isotropic Gaussian function. By geostrophy, the cross correlation

with the tangential wind is maximum where the radial gradient of the

height correlation is maximum.

c©“Data Assimilation Concepts and Methods” by F. Bouttier and P. Courtier (ECMWF)
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Schematic illustration of the correlation of Φ-Φ.
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The following figure shows schematically the shape of typical
wind/height correlation functions used in OI.

Note that the u–h correlations have the opposite sign than
the h–u correlations because the first and second variables
correspond to the first and second points i and j respectively.
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Correlation and cross-correlation functions.
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Most NWP centres have now adopted the “NMC method”
for estimating the forecast error covariance.

The structure of the background error covariance is esti-
mated as the average difference between two short-range
model forecasts verifying at the same time.

B ≈ αE{[xf (48 h)− xf (24 h)][xf (48 h)− xf (24 h)]T}

The magnitude of the covariance is then appropriately scaled.

The model–forecast differences themselves provide a multi-
variate global forecast difference covariance.

This method has been shown to produce better results than
previous estimates computed from forecast minus observa-
tion estimates.
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Comparison of 3D-Var and OI
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OI, because the cost function J is minimized using global
minimization algorithms.

As a result, many of the simplifying approximations re-
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minimization algorithms.

As a result, many of the simplifying approximations re-
quired by OI are unnecessary in 3D-Var.

• In 3D-Var there is no data selection; all available data
are used simultaneously. This avoids jumpiness in the
boundaries between regions that have selected different
observations.

• The background error covariance matrix for 3D-Var can
be defined with a more general, global approach, rather
than the local approximations used in OI.

• It is possible to add constraints to the cost function with-
out increasing the cost of the minimization. These can be
used to control spurious noise.

22



• For example, we may require the analysis increments to
approximately satisfy the linear global balance equation.

23



• For example, we may require the analysis increments to
approximately satisfy the linear global balance equation.

• With the implementation of 3D-Var at NCEP, it became
unnecessary to perform a separate initialization step in
the analysis cycle.

23



• For example, we may require the analysis increments to
approximately satisfy the linear global balance equation.

• With the implementation of 3D-Var at NCEP, it became
unnecessary to perform a separate initialization step in
the analysis cycle.

• It is possible to incorporate nonlinear relationships be-
tween observed variables and model variables in the H
operator. This is harder to do in the OI approach.

23



• For example, we may require the analysis increments to
approximately satisfy the linear global balance equation.

• With the implementation of 3D-Var at NCEP, it became
unnecessary to perform a separate initialization step in
the analysis cycle.

• It is possible to incorporate nonlinear relationships be-
tween observed variables and model variables in the H
operator. This is harder to do in the OI approach.

• 3D-Var has allowed three-dimensional variational assimi-
lation of radiances.

23



• For example, we may require the analysis increments to
approximately satisfy the linear global balance equation.

• With the implementation of 3D-Var at NCEP, it became
unnecessary to perform a separate initialization step in
the analysis cycle.

• It is possible to incorporate nonlinear relationships be-
tween observed variables and model variables in the H
operator. This is harder to do in the OI approach.

• 3D-Var has allowed three-dimensional variational assimi-
lation of radiances.

• The quality control of the observations becomes easier
and more reliable when it is made in the space of the
observations than in the space of the retrievals.
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End of §5.5
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