ECMWF Data Assimilation

Contribution from many people

ECMWF DA System&Observations DA School Buenos Aires 2008

Fundamental challenges of ECMWF 4D-Var Assimilation System

- Incremental 4D-Var
- Linearized Physics
- Observation handling
- Assimilation of satellite data
- Model and Observation Bias
- Modelling Background Covariance

Data assimilation system (4D-Var)

- The observations are used to correct errors in the short forecast from the previous analysis time.
- Every 12 hours we assimilate 4 8,000,000 observations to correct the 100,000,000 variables that define the model's virtual atmosphere.
- This is done by a careful 4-dimensional interpolation in space and time of the available observations; this operation takes as much computer power as the 10-day forecast.

A few 4D-Var Characteristics

All observations within a 12-hour period are used simultaneously in one global (iterative) estimation problem

- Observation minus model differences are computed <u>at the</u> <u>observation time</u> using the full forecast model at T799 (25km) resolution
- 4D-Var finds the 12-hour forecast evolution that optimally fits the available observations. A linearized forecast model is used in the minimization process based on the adjoint method
- It does so by adjusting surface pressure, the upper-air fields of temperature, wind, specific humidity and ozone
- The analysis vector consists of ~10⁸elements at T255 resolution (80km)

4

ECMWF

Fundamental challenges of ECMWF 4D-Var Assimilation System

- Incremental 4D-Var
- Linearized Physics
- Observation handling
- Assimilation of satellite data
- Model and Observation Bias
- Modelling Background Covariance

4D Variational Data Assimilation

- Model: \mathcal{M} ,
- Observations: y,
- Background: x_b ,
- Observation operator: \mathcal{H} ,
- Cost function to minimise: $J(x) = \frac{1}{2}(x - x_b)^T B^{-1}(x - x_b) + \frac{1}{2}[y - \mathcal{H}(x)]^T R^{-1}[y - \mathcal{H}(x)] + J_c$
- In discrete form:

$$J(x) = \frac{1}{2}(x - x_b)^T B^{-1}(x - x_b) + \frac{1}{2} \sum_{i=0}^n [y_i - \mathcal{H}_i(\mathcal{M}_i(x))]^T R_i^{-1} [y_i - \mathcal{H}_i(\mathcal{M}_i(x))]$$

ECMWF (

Incremental 4D-Var

- The cost function is expressed in terms of increments with respect to the background state $\delta x = x x_b$.
- \mathcal{H} and \mathcal{M} are linearised around $x_i = \mathcal{M}_i(x_0)$.

$$J(\delta x) = \frac{1}{2} \delta x^T B^{-1} \delta x + \frac{1}{2} \sum_{i=0}^n (H_i M_i \delta x - d_i)^T R_i^{-1} (H_i M_i \delta x - d_i)$$

where

- H_i and M_i are the linearised observation operator and model, - $d_i = y_i - \mathcal{H}_i(\mathcal{M}_i(x_b))$ are the innovations.
- The innovations, which are the primary input to the assimilation, are always computed using the full observation operator and model to ensure the highest possible accuracy.

4D-Var incremental formulation Courtier, Thépaut and Hollingsworth (1994)

In the <u>incremental</u> formulation the cost function *J* is expressed in terms of increments $\delta \mathbf{x} = \mathbf{x} \cdot \mathbf{x}_{b}$ with respect to the background state at initial time.

 H_i and M_i are the TL of \mathcal{H}_i and \mathcal{M}_i linearized around $x(t_i) = \mathcal{M}_i(x_b(t_0))$

$$J(\delta x) = \delta x^T B^{-1} \delta x + \sum_{i=1}^N (H_i M_i \delta x - d_i)^T R^{-1} (H_i M_i \delta x - d_i)$$

The *i*-summation is over N=25

The <u>innovations</u> d_i are calculated using the

¹/₂-hour long <u>time slots</u> of the

12-hour assimilation period.

non-linear operators, \mathcal{H}_i and \mathcal{M}_i .

$$d_i = y_i - \mathcal{H}_i(\mathcal{M}_i(x_b(t_0)))$$

8

This ensures the highest possible <u>accuracy</u> for the calculation of the innovations d_i which are the primary input to the assimilation!

The Outer Iterations

After each minimisation at inner level:

- x is updated: $x_a^j = x_b + \delta x_j$,
- H_i and M_i are re-linearised around $x_i = \mathcal{M}_i(x_a^j)$,
- Innovations are re-calculated using the full nonlinear observation operator \mathcal{H} and model \mathcal{M} :

$$d_i^j = y_i - \mathcal{H}_i(\mathcal{M}_i(x_a^j))$$

- Superscript j represents the **outer iteration**.
- The nonlinear model \mathcal{M} remains at **T799** throughout.

The Inner Iterations

• Tangent Linear approximation:

 $\mathcal{M}(x + \delta x) \approx \mathcal{M}(x) + M\delta x$ and $\mathcal{H}(x + \delta x) \approx \mathcal{H}(x) + H\delta x$

- Approximations to reduce cost: the tangent linear model (and its adjoint) is degraded with respect to the full model \mathcal{M} :
 - Lower resolution T255 instead of T799
 - Simplified physics (some processes are ignored),
 - Simpler dynamics (spectral instead of grid-point humidity).
- This results in shorter control vector and cheaper TL and
 AD models during the minimisation.

ECMWF 4D-Var procedure

Use all data in a 12-hour window (0900-2100 UTC for 1200 UTC analysis)

- **1.** Group observations into 1/2 hour time slots
- 2. Run the T799 (25km) high resolution forecast from the previous analysis and compute "observation"- "model" differences
- 3. Adjust the model fields at the start of assimilation window (0900 UTC) so the 12-hour forecast better fits the observations. This is an iterative process using a lower resolution linearized model T95 (210km), T159 (125km) or T255 (80 km) and its adjoint model
- 4. Rerun the T799 high resolution model from the modified (improved) initial state and calculate new observation departures
- 5. The 3-4 loop in repeated three times to produce a good high resolution estimate of the atmospheric state the result is the ECMWF analysis

Multi-incremental quadratic 4D-Var at ECMWF

4D-Var with three inner loop: efficient, accurate and allows non-linearity

- M.Level 80 (900 hPa) temperature analysis increments for each of the three minimizations.
- Decreasing • amplitudes T95>T159>T255.
- Small corrections • added at T255 where data density is highest.
- Model and observ. operators are relinearized twice.

Add T95 increment to T799 BG and re-linearize M_r H

Add T159 increment and re-linearize M_r H

ECMWF DA System&Observations **DA School Buenos Aires 2008**

Fundamental challenges of ECMWF 4D-Var Assimilation System

- Incremental 4D-Var
- Linearized Physics
- Observation handling
- Assimilation of satellite data
- Model and Observation Bias
- Modelling Background Covariance

ECMWF LINEARIZED PHYSICS

Fundamental challenges of ECMWF 4D-Var Assimilation System

- Incremental 4D-Var
- Linearized Physics
- Observation handling
- Assimilation of satellite data
- Model and Observation Bias
- Modelling Background Covariance

Data extraction

- Check out duplicate reports
- Ship tracks check
- Hydrostatic check

Thinning

 Data not used to avoid over-sampling and correlated errors

 Even so departures from background and analysis are generated and usage flags also

Blacklisting

- Data skipped due to systematic bad performance or due to different considerations (e.g. data being assessed in passive mode)
- Departures and flags available for further assessment

Model/4D-Var dependent QC

Analysis

23

ECMV

- First guess based rejections
- VarQC rejections

Observation data count for one 12h 4D-Var cycle 0900-2100UTC 3 March 2008

	Screened		Ass	imilated	
• Synop:	450,000	0.3%	• Synop:	64,000	0.7%
Aircraft:	434,000	0.3%	Aircraft:	215,000	2.4%
Dribu:	24,000	0.02%	• Dribu:	7,000	0.1%
• Temp:	153,000	0.1%	• Temp:	76,000	0.8%
Pilot:	86,000	0.1%	• Pilot:	39,000	0.4%
• AMV's:	2,535,000	1.6%	• AMV's:	125,000	1.4%
Radiance dat	a: 150,663,000	96.9%	Radiance data:	8,207,000	91.0%
Scat:	835,000	0.5%	• Scat:	149,000	1.7%
•GPS radio oco	cult. 271,000	0.2%	•GPS radio occu	lt. 137,000	1.5%
TOTAL:	155,448,000	100.00%	TOTAL:	9,018,000	100.00%
99% of screened data is from satellites			96% of assimilated data is from satellites		

Quality control: Good example

In the quality control procedure all data from different data types are simultaneously checked. In this Australian example the presence of AIRCRAFT data has led to the rejection of a PILOT wind.

Quality control: Bad example Tropical Cyclone

Observations of intense and small-scale features may be rejected although the measurements are correct.

The problem occurs when the resolution of the analysis system (as determined by the B-matrix) is insufficient.

Quality control: Bad example Extreme event -The 'French Storm', 27 Dec 1999

Observations of intense and small-scale features may be rejected although the measurements are correct.

27

The Huber-norm –

Comparing optimal observation weights Huber-norm (red) vs. Gaussian+flat (blue)

North Hemisphere Temperature from Radiosonde

29

10⁵

104

 10^{3}

 10^{2}

 10^{1}

Fundamental challenging of ECMWF 4D-Var Assimilation System

- Incremental 4D-Var
- Linearized Physics
- Observation handling
- Assimilation of satellite data
- Model and Observation Bias
- Modelling Background Covariance

Satellite observing system

ECMWF

31

ECMWF DA System&Observations DA School Buenos Aires 2008

Combined impact of all satellite data

Assimilation of rain-affected microwave radiances

SSM/I observational **\Delta Tb** 19v-19h [K]

20

-40

-60

-80

- Assimilation of rain-affected SSM/I radiances in 1D+4D-Var active since June 2005.
- Main difficulties: inaccurate moist physics parameterizations (location/intensity), formulation of observation errors, bias correction, linearity.
- Major improvements accomplished in 2007 and SSMIS, TMI, AMSR-E data included.
- Direct 4D-Var radiance assimilation envisaged for 2008.

4D-Var first guess SSM/I ∆Tb 19v-19h [K]

Forecast sensitivity to observations in analysis

CY32R1, T511L60, 20070105-20070212

SSM/I clear-sky, winter

SSM/I clouds/rain, winter

Mean 36-12h precipitation forecast initialized at 12 UTC

[J/kg]

Advanced infrared sounders: AIRS and IASI

500 hPa geopotential anomaly correlation (56 cases, spring 2007, normalized RMSE difference, own analysi

35

ECMWF 😷

Assimilation of GPS radio occultation data

- COSMIC bending angles assimilated (both rising and setting occultations), CHAMP, GRACE as back-up, GRAS being monitored.
- GPSRO data reveals a warm bias of aircraft observations.
- Substantial improvement of stratospheric T-biases.
- METOP GRAS data assimilated since May 2008.
- COSMIC-2 follow-on?

Southern Hemisphere scores (normalized AC differences)

Improved fit to radiosonde data

36

ECMWF DA System&Observations DA School Buenos Aires 2008

Recent revisions to observation usage

- Use AMSU-B on NOAA-16, 17 and 18, AMSU-A on NOAA-18 and 20
- Operational assimilation of 155 EOS-1/AIRS channels
- Operational assimilation of 168 METOP/IASI channels
- Radiances from Meteosat-5 (India), GOES-9 (Japan) and 12 (replaces GOES-8) and Meteosat-8
- Atmosp. feature track. winds from GOES-12, Meteosat-8, MTSAT-1R
- Use MODIS winds from AQUA satellite
- Use of SCIAMACHY and more SBUV ozone retrievals
- METAR surface pressure data active
- Increase use of radiosonde humidity in upper troposphere
- Use GPS radio occultation data (COSMIC)

Recent revisions to the assimilation system

- Increased resolution from T511/T159 L60 to T799/T255 L91
- Now three outer loop: T799 outer with T95/T159/T255 inner loop
- Use grid-point humidity and ozone in 4D-Var analysis
- More advanced Tangent Linear physics scheme in 4D-Var
- Wavelet Jb formulation has been implemented
- Jb statistics from latest ensemble data assimilation
- New humidity analysis using a normalized control variable
- Assimilation of "Cloudy and rainy radiances"
- Variational bias correction of satellite radiances
- Adaptive bias correction for radiosondes and SYNOP pressure data

Fundamental challenging of ECMWF 4D-Var Assimilation System

- Incremental 4D-Var
- Linearized Physics
- Observation handling
- Assimilation of satellite data
- Model and Observation Bias
- Modelling Background Covariance

Model bias:

upper-stratospheric model errors variation

ECMWF DA System&Observations DA School Buenos Aires 2008

Observation bias: Radiosonde temperature observations

Bias changes due to change of equipment

Observation bias: Satellite radiances

Monitoring the background departures (averaged in time and/or space):

Diurnal bias variation in a geostationary satellite

Air-mass dependent bias (AMSU-A channel 14)

Implications for data assimilation: The effect of model bias on trend estimates

Most assimilation systems assume unbiased models and unbiased data

Biases in models and/or data can induce spurious trends in the assimilatio

Variational bias correction: The modified analysis problem

The original problem:

Dee 2004, 2005

J_o: observation constraint

44

The modified problem:

Performance:

Adaptive bias correction of NOAA-17 HIRS Ch12

ECMWF DA System&Observations DA School Buenos Aires 2008

Performance:

NOAA-9 MSU channel 3 bias corrections (cosmic storm)

Weak-constraint 4D-Var

Include model error in the control vector:

$$J(x_0, \eta) = \frac{1}{2} \sum_{i=0}^{n} [\mathcal{H}(x_i) - y_i]^T R_i^{-1} [\mathcal{H}(x_i) - y_i] + \frac{1}{2} (x_0 - x_b)^T B^{-1} (x_0 - x_b) + \eta^T Q^{-1} \eta \text{ with } x_i = \mathcal{M}_i (x_{i-1}) + n_i.$$

Tremolet 2007

Constraint is determined by Q

Lindskog 2008

SSU Ch3 mean radiance departures – Aug 1993

ECMWF DA System&Observations DA School Buenos Aires 2008

Fundamental challenging of ECMWF 4D-Var Assimilation System

- Incremental 4D-Var
- Linearized Physics
- Observation handling
- Assimilation of satellite data
- Model and Observation Bias
- Modelling Background Covariance

Importance of Background Covariances

- The formulation of the J_b term of the cost function is <u>crucial</u> to the performance of current analysis systems.
- To see why, suppose we have a <u>single observation</u> of the value of a <u>model field</u> at <u>one gridpoint</u>.
- For this simple case, the observation operator is:

H = (0, ..., 0, 1, 0, ..., 0).

• The gradient of the 3dVar cost function is:

 $\nabla J = B^{-1}(x-x_b) + H^{T}R^{-1}(Hx-y) = 0$

• Multiply through by B and rearrange a bit:

 $x - x_b = B H^T R^{-1}(y - Hx)$

• But, for this simple case, R⁻¹(y-Hx) is a scalar

Importance of Background Covariances

- So, we have: $\mathbf{X} \mathbf{X}_h \propto \mathbf{B} \mathbf{H}^{\mathrm{T}}$
- But, H = (0,...,0,1,0,...,0)
- => The analysis increment is proportional to a column of B.
- The role of B is:
 - 1. To spread out the information from the observations.
 - 2. To provide statistically consistent increments at the neighbouring gridpoints and levels of the model.
 - 3. To ensure that observations of one model variable (e.g. temperature) produce dynamically consistent increments in the other model variables (e.g. vorticity and divergence).

Estimating Background Error Statistics from Ensembles of Analyses

The ECMWF J_b Formulation – the balance operator

- The most obvious correlation in the background errors is the balance between mass errors and wind errors in the extra-tropics.
- We therefore define our change of variable as:

 $L = KB_{u}^{1/2}$

- where K accounts for all the correlation <u>between</u> variables (e.g. between the mass and wind fields).
- The matrix B_u is a covariance matrix for variables that are uncorrelated with each other.

The ECMWF J_b Formulation – The balance operator

$$\begin{pmatrix} \zeta \\ \mathbf{D} \\ (\mathbf{T}, \mathbf{p}_{s}) \\ \mathbf{q} \end{pmatrix} = \begin{pmatrix} \mathbf{I} & 0 & 0 & 0 \\ \mathbf{M} & \mathbf{I} & 0 & 0 \\ \mathbf{N} & \mathbf{P} & \mathbf{I} & 0 \\ 0 & 0 & 0 & \mathbf{I} \end{pmatrix} \begin{pmatrix} \zeta \\ \mathbf{D}_{u} \\ (\mathbf{T}, \mathbf{p}_{s})_{u} \\ \mathbf{q} \end{pmatrix}$$

- The most important part of the balance operator is the sub-matrix N, which calculates a balanced part of (T,p_s), determined from the vorticity.
- N is implemented in 2 parts:
 - 1. A balanced "geopotential" is calculated from ζ .
 - 2. Balanced (T,p_s) are calculated using statistical regression between (T,p_s) and geopotential.

Increments from a single observation

ECMWF DA System&Observations DA School Buenos Aires 2008

Increments for a single observation of geopotential height at 1000hPa

NSCAT wind information vertically propagated and impact on other variables

Ensembles of data assimilations

- Run an ensemble of analyses with randomly perturbed observations, peturbed SST field and stochastic physics perturbations.
- Compute the variance of the short-range forecast fields
- The spread will have the statistical characteristics of short-range forecast error and it will be flow dependent

850 hPa U-Comp 1-Month EnDA Mean Spread of 3-hour forecast

ECMWF DA System&Observations DA School Buenos Aires 2008

Reanalysis

- ERA-Interim is current ECMWF reanalysis project following ERA-15 & 40.
- 2006 model cycle, 4D-Var, variational bias-correction, more data (rain assimilation, GPSRO); 1989-1998 period available, 1998-

