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ECMWF Data Assimilation

Contribution from many people
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Fundamental challenges of ECMWF 
4D-Var Assimilation System

� Incremental 4D-Var

� Model and Observation Bias 

� Modelling Background Covariance 

� Linearized Physics

� Assimilation of satellite data

� Observation handling
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Data assimilation system (4D-Var)

� The observations are used to correct errors in the short forecast from the 

previous analysis time.

� Every 12 hours we assimilate 4 – 8,000,000 observations to correct the 

100,000,000 variables that define the model’s virtual atmosphere.

� This is done by a careful 4-dimensional interpolation in space and time of 

the available observations; this operation takes as much computer power 

as the 10-day forecast.
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� Observation minus model 
differences are computed at the 
observation time using the full 
forecast model at T799 (25km) 
resolution 

� 4D-Var finds the 12-hour forecast 
evolution that optimally fits the 
available observations. A 
linearized forecast model is used 
in the minimization process based 
on the adjoint method

� It does so by adjusting  surface 
pressure, the upper-air fields of 
temperature,  wind,  specific
humidity and ozone

� The analysis vector consists of 
~108elements at T255 resolution 
(80km)

A few 4D-Var Characteristics

All observations within a 12-hour period are used simultaneously in one 

global (iterative) estimation problem

09Z        12Z         15Z        18Z         21Z 
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4D Variational Data Assimilation
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Incremental 4D-Var
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4D-Var incremental formulation
Courtier, Thépaut and Hollingsworth (1994)

The i-summation is over N=25

½-hour long time slots of the  

12-hour assimilation period.

In the incremental formulation the cost function J is expressed in terms of 

increments δx=x-xb with respect to the background state  at initial time.

and are the TL of and linearized around

The innovations d
i 
are calculated using the 

non-linear operators, HHHH
i
and MMMM

i 
.

This ensures the highest possible accuracy for the calculation of the innovations d
i 

which are the primary input to the assimilation!
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The Outer Iterations

T799
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The Inner Iterations

T255 instead of T799

This
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ECMWF 4D-Var procedure

Use all data in a 12-hour window (0900-2100 UTC for 1200 UTC analysis)

1. Group observations into ½ hour time slots

2. Run the T799 (25km) high resolution forecast from the previous analysis 

and compute “observation”- “model” differences

3. Adjust the model fields at the start of assimilation window (0900 UTC) 

so the 12-hour forecast better fits the observations.  This is an iterative 
process using a lower resolution linearized model T95 (210km), 

T159 (125km) or T255 (80 km) and its adjoint model

4. Rerun the T799 high resolution model from the modified (improved) 
initial state and calculate new observation departures

5. The 3-4 loop in repeated three times to produce a good high resolution 

estimate of the atmospheric state – the result is the ECMWF analysis
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Multi-incremental quadratic 4D-Var at 
ECMWF

T799L91

T95L91 

T159L91

T255L91
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T511 (40km)

T799 (25km)

Since           

February 2006

10m 

winds

Outer loop forecast resolution is now T799

Important for accurate comparison against observations
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91-level vertical resolution 
from Feb 2006
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Katrina: 90h forecasts 

valid 18UTC 29 Aug

T511 (40km)  versus T799 

(25km):

Central pressure 940hPa, 448mm rain in 24h

Central pressure 909hPa, 785mm rain in 24h

T511

T799

Model resolution 
is important, 
especially for
extreme events
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4D-Var with three inner loop:

efficient, accurate and allows non-linearity
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• M.Level 80 (900 hPa) 
temperature analysis 
increments for each 
of the three 
minimizations.

• Decreasing 
amplitudes 
T95>T159>T255.

• Small corrections 
added at T255 where 
data density is 
highest.

• Model and observ. 
operators are re-
linearized twice.

Add T95 increment to T799 BG and re-linearize M, H

Add T159 increment and re-linearize M, H  

Add T255 increment = final T799 analysis  
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 OPERATIONAL 
VERSION

+
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 Dynamics
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new moist parametrization
used since 2007

 ECMWF LINEARIZED PHYSICS
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 Zonal wind increments at model level ~ 1000 hPa [ 24-hour integration]

 FD

 TLADIAB
 TLWSPHYS

 FD  = Finite Difference              TLADIAB        = adiabatic TL model

 TLWSPHYS    = TL model with the whole set of simplified physics
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Conventional observations used

MSL Pressure, 10m-wind, 2m-Rel.Hum. DRIBU: MSL Pressure, Wind-10m

Wind, Temperature, Spec. Humidity PILOT/Profilers: Wind

Aircraft: Wind, Temperature

SYNOP/METAR/SHIP:

Radiosonde balloons (TEMP):

Note: We only use a limited 

number of the observed 

variables; especially over land.



ECMWFECMWF DA System&Observations DA School Buenos Aires 2008 22

Satellite data sources used in the 
operational ECMWF analysis

Geostationary, 4 IR and 5 winds

5 imagers: 3xSSM/I,  AMSR-E, TMI

4 ozone

13 Sounders: NOAA AMSU-A/B, HIRS, AIRS, IASI, MHS

2 Polar, winds: MODIS

3 Scatterometer sea winds: ERS, ASCAT, QuikSCAT

6 GPS radio occultation
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Data extraction

Thinning

• Data not used to avoid 
over-sampling and 
correlated errors

• Even so departures 
from background and 
analysis are generated 
and usage flags also

Blacklisting

• Data skipped due to systematic 

bad performance or due to 
different considerations (e.g. data 
being assessed in passive mode)

• Departures and flags available 
for further assessment

Model/4D-Var dependent QC

• First guess based rejections

• VarQC rejections

Used data � Increments

• Check out duplicate reports

• Ship tracks check

• Hydrostatic check

Analysis
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� Synop:                    64,000        0.7%

� Aircraft:                215,000        2.4%

� Dribu:                        7,000        0.1%

� Temp:                      76,000        0.8%

� Pilot:                        39,000        0.4%

� AMV’s:                   125,000        1.4%

� Radiance data:   8,207,000      91.0%

� Scat:                       149,000        1.7%

�GPS radio occult.   137,000        1.5%

TOTAL:                   9,018,000    100.00%

� Synop:                    450,000       0.3%

� Aircraft:                   434,000      0.3%

� Dribu:                        24,000      0.02%

� Temp:                      153,000      0.1%

� Pilot:                          86,000      0.1%

� AMV’s:                  2,535,000      1.6%

� Radiance data: 150,663,000     96.9%

� Scat:                         835,000       0.5%

�GPS radio occult.     271,000       0.2%

TOTAL:                  155,448,000   100.00%

Screened Assimilated

99% of screened data is from satellites 96% of assimilated data is from satellites

Observation data count for one 12h 4D-Var cycle   

0900-2100UTC 3 March 2008
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Quality control: Good example

In the quality control 
procedure all data from 

different  data types are 

simultaneously checked. In 

this Australian example the 

presence of AIRCRAFT 

data has led to the 

rejection of a PILOT wind.
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Quality control: Bad example
Tropical Cyclone

Observations of intense and small-scale features may be rejected although 

the measurements are correct. 

The problem 
occurs when the 

resolution of the 

analysis system 

(as determined by 

the B-matrix) is 

insufficient.
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Quality control: Bad example

Extreme event -

The ‘French Storm’, 27 Dec 

1999

Observations of intense 
and small-scale 

features may be 

rejected although the 
measurements are 

correct. 
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The Huber-norm –

Gaussian

Huber

Gaussian + flat
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Comparing optimal observation weights

Huber-norm (red) vs. Gaussian+flat (blue)

North Hemisphere Temperature from Radiosonde 

y-Hxb
y-Hxb
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Fundamental challenging of 
ECMWF 4D-Var Assimilation 

System
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� Model and Observation Bias 

� Modelling Background Covariance 

� Linearized Physics

� Assimilation of satellite data

� Observation handling
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Satellite observing system
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Southern 
hemisphere: ~3 days 

at day 5

Northern hemisphere: 
~2/3 to 3/4 of a day at 

day 5

Combined impact of all satellite data
Anomaly correlation
geopotential height

500 hPa

Anomaly correlation
geopotential height

500 hPa
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Assimilation of rain-affected microwave 
radiances

• Assimilation of rain-affected SSM/I radiances in 1D+4D-Var active since June 2005.

• Main difficulties: inaccurate moist physics parameterizations (location/intensity), formulation of 

observation errors, bias correction, linearity.

• Major improvements accomplished in 2007 and SSMIS, TMI, AMSR-E data included.

• Direct 4D-Var radiance assimilation envisaged for 2008.

4D-Var first guess SSM/I ∆∆∆∆Tb 19v-19h [K] SSM/I observational ∆∆∆∆Tb 19v-19h [K]
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CY32R1, T511L60, 20070105-20070212

SSM/I clear-sky, winter SSM/I clouds/rain, winter

Mean 36-12h precipitation forecast initialized at 12 UTC [J/kg]

[10-3 mm]

Forecast sensitivity to observations in analysis



ECMWFECMWF DA System&Observations DA School Buenos Aires 2008 35

Advanced infrared sounders: AIRS and IASI 

AIRS
� Operational at ECMWF since October 2003.
� 324 channels received.
� Up to 155 channels may be assimilated (CO2

and H2O bands).

IASI
� Operational at ECMWF since June 2007.
� 8461 channels received

� 366 Channels routinely monitored.
� Up to 168 channels may be assimilated (CO2

band only).

NH

SH

better

worse

500 hPa geopotential anomaly correlation 
(56 cases, spring 2007, normalized RMSE difference, own analysis
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Assimilation of GPS radio occultation data

• COSMIC bending angles assimilated (both rising and setting occultations), CHAMP, GRACE as 

back-up, GRAS being monitored.

• GPSRO data reveals a warm bias of aircraft observations.

• Substantial improvement of stratospheric T-biases.

• METOP GRAS data assimilated since May 2008.

• COSMIC-2 follow-on?

Southern Hemisphere scores
(normalized AC differences)

1000 hPa 500 hPa

200 hPa 100 hPa

Improved fit to radiosonde data
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Recent revisions to observation usage

� Use AMSU-B on NOAA-16, 17 and 18, AMSU-A on NOAA-18 and 20 

� Operational assimilation of 155 EOS-1/AIRS channels

� Operational assimilation of 168 METOP/IASI channels

� Radiances from Meteosat-5 (India), GOES-9 (Japan)  and 12 (replaces GOES-8) and 

Meteosat-8

� Atmosp. feature track. winds from GOES-12, Meteosat-8, MTSAT-1R

� Use MODIS winds from AQUA satellite

� Use of SCIAMACHY and more SBUV ozone retrievals

� METAR surface pressure data active

� Increase use of radiosonde humidity in upper troposphere

� Use GPS radio occultation data (COSMIC)
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Recent revisions to the assimilation 
system

� Increased resolution from T511/T159 L60 to T799/T255 L91

� Now three outer loop: T799 outer with T95/T159/T255 inner loop

� Use grid-point humidity and ozone in 4D-Var analysis

� More advanced Tangent Linear physics scheme in 4D-Var

� Wavelet Jb formulation has been implemented

� Jb statistics from latest ensemble data assimilation

� New humidity analysis using a normalized control variable

� Assimilation of “Cloudy and rainy radiances”

� Variational bias correction of satellite radiances

� Adaptive bias correction for radiosondes and SYNOP pressure data
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Fundamental challenging of 
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System
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Model bias:

upper-stratospheric model errors variation

20hPa

(22km)

0.1hPa

(65km)

T255L60 model currently used for ERA-Interim

Summer: Radiation, ozone?

Winter: Gravity-wave drag?
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Observation bias:    

Radiosonde temperature observations

observed – ERA-40 background

at Saigon (200 hPa, 0 UTC)

Bias changes due to change of equipment

Daytime warm bias due 

to radiative heating of 

the temperature sensor

(depends on solar elevation 

and equipment type)

Mean temperature anomalies

for different solar elevations



ECMWFECMWF DA System&Observations DA School Buenos Aires 2008 42

Observation bias:    

Satellite radiances

Diurnal bias variation in a geostationary satellite

Air-mass dependent bias (AMSU-A channel 14)

nadir limblimb

Bias depending on scan 

position (AMSU-A ch 7)

Constant bias (HIRS channel 5)

Monitoring the background departures (averaged in time and/or space): 
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Implications for data assimilation:

The effect of model bias on trend estimates

Most assimilation systems assume unbiased models and unbiased data 

Biases in models and/or data can induce spurious trends in the assimilation
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Variational bias correction:   

The modified analysis problem

Jb: background constraint 

Jo: observation constraint

[ ] [ ]h(x)yRh(x)yx)(xBx)(x(x) 1T

b

1T

b −−+−−= −−
J

The original problem:

[ ] [ ]h(x)β)(x,byRh(x)β)(x,by

β)(βBβ)(βx)(xBx)(xβ)J(x,

o

1T

o

b

1

β

T

bb

1

x

T

b

−−−−+

−−+−−=

−

−−

Jb: background constraint for x Jββββ: background constraint for ββββ

Jo: bias-corrected observation constraint

The modified problem:

Parameter estimate

from previous analysis

Dee 2004, 2005
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Performance:   

Adaptive bias correction of NOAA-17 HIRS Ch12

p(0): global constant
p(1): 1000-300hPa thickness

p(2): 200-50hPa thickness
p(3): surface temperature

p(4): total column water

mean analysis departures

mean bias correction
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Performance:

NOAA-9 MSU channel 3 bias corrections (cosmic storm)

Variational bias correction smoothly handles the abrupt change in bias:

• initially QC rejects most data from this channel

• the variational analysis adjusts the bias estimates

• bias-corrected data are gradually allowed back in

• no shock to the system!

200 hPa temperature departures from radiosonde observations
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Weak-constraint 4D-Var

Include model error in the control vector:

Constraint is determined by Q

Tremolet 2007

Lindskog 2008
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SSU Ch3 mean radiance departures – Aug 
1993

ERA-Interim ERA-Interim + weak constraint
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Importance of Background Covariances

• The formulation of the Jb term of the cost function is crucial to the 
performance of current analysis systems.

• To see why, suppose we have a single observation of the value of a 
model field at one gridpoint.

• For this simple case, the observation operator is:

H = ( 0,...,0,1,0,...,0) .

• The gradient of the 3dVar cost function is:

∇J = B-1(x-xb) + HTR-1(Hx-y) = 0

• Multiply through by B and rearrange a bit:

x - xb = B HTR-1(y-Hx)

• But, for this simple case, R-1(y-Hx) is a scalar
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Importance of Background Covariances

• So, we have:

• But, H = ( 0,...,0,1,0,...,0)

• => The analysis increment is proportional to a column of B.

• The role of B is:

1. To spread out the information from the observations.

2. To provide statistically consistent increments at the neighbouring gridpoints

and levels of the model.

3. To ensure that observations of one model variable (e.g. temperature) 

produce dynamically consistent increments in the other model variables 

(e.g. vorticity and divergence). 

TBHxx ∝−
b
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Estimating Background Error Statistics 
from Ensembles of Analyses

Analysis

xb

y

SST (etc.)

xa

Forecast
xf

Normal Analysis

Analysis

Xt+εStochastics

y+εo

SST+εSST (etc.)

xa+εa

Forecast
xf+εf

Perturbed Analysis
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The ECMWF Jb Formulation – the balance 

operator

• The most obvious correlation in the background errors is the balance 

between mass errors and wind errors in the extra-tropics.

• We therefore define our change of variable as:

L = KBu
1/2

• where K accounts for all the correlation between variables (e.g. 

between the mass and wind fields).

• The matrix Bu is a covariance matrix for variables that are 

uncorrelated with each other.
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The ECMWF Jb Formulation – The balance 

operator

• The most important part of the balance operator is the sub-matrix N, 
which calculates a balanced part of (T,ps), determined from the vorticity.

• N is implemented in 2 parts:

1. A balanced “geopotential” is calculated from ζ.

2. Balanced (T,ps) are calculated using statistical regression between (T,ps) and 
geopotential.

0 0 0

0 0

( , ) 0 ( )

0 0 0

u

s u

    
    
    =
    
        
    

s

ζ I ζ

D M I D

T p N P I T,p

q I q
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Increments from a single observation

Increments due to a single

observation  of geopotential

height at 1000 hPa 60N with

value 10m below background
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Increments for a single observation of 
geopotential height at 1000hPa

300hPa surface
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NSCAT wind information vertically 

propagated and impact on other variables
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Ensembles of data assimilations

• Run an ensemble of analyses with randomly perturbed observations, 

peturbed SST field and stochastic physics perturbations.

• Compute  the variance of the short-range forecast fields

• The spread will have the statistical characteristics of short-range forecast 

error and it will be flow dependent
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The ERA-40 observing system:

VTPR

TOMS/ SBUV

HIRS/ MSU/ SSU
Cloud motion winds

Buoy data

SSM/I ERS-1
ERS-2

AMSU

METEOSAT 

reprocessed
cloud motion winds

Conventional surface and upper-air observations

NCAR/NCEP, ECMWF, JMA, US Navy, Twerle, GATE, FGGE, TOGA, TAO, COADS, …

Aircraft data

1957 2002

1973
1979

1982 1988

1973 1979
1987 1991

1995

1998• ERA-40 observations until August 2002

• ECMWF operational data after August 2002

• Reprocessed altimeter wave-height data from ERS

• Humidity information from SSM/I rain-affected radiance data

• Reprocessed METEOSAT AMV wind data

• Reprocessed ozone profiles from GOME

• Reprocessed GPSRO data from CHAMP 

ERA-Interim

1989

• ERA-Interim is current ECMWF reanalysis project following ERA-15 
& 40.

• 2006 model cycle, 4D-Var, variational bias-correction, more data 
(rain assimilation, GPSRO); 1989-1998 period available, 1998-
2005 period finished, real-time in 2009.

Reanalysis


