Advanced data assimilation methods with evolving forecast error covariance

Four-dimensional variational analysis
(4D-Var)

Shu-Chih Yang (with EK)

Find the optimal analysis

$$
\begin{aligned}
& T_{1}=T_{t}+\varepsilon_{1} \text { (forecast) } \\
& T_{2}=T_{t}+\varepsilon_{2} \text { (observation) }
\end{aligned} \square \text { Best estimate the true value }
$$

- Least squares approach

Find the optimal weights to minimize the analysis error covariance

$$
T_{a}=\left(\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right) T_{1}+\left(\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right) T_{2}
$$

- Variational approach

Find the analysis that will minimize a cost function, measuring its distance to the background and to the observation

$$
J(T)=\frac{1}{2}\left[\frac{\left(T-T_{1}\right)^{2}}{\sigma_{1}^{2}}+\frac{\left(T-T_{2}\right)^{2}}{\sigma_{2}^{2}}\right], \frac{\partial J}{\partial T}=0 \text { for } T=T_{a}
$$

Both methods give the same T_{a} !

3D-Var

How do we find an optimum analysis of a 3-D field of model variable $x^{\text {a }}$, given a background field, $\mathbf{x}^{\mathbf{b}}$, and a set of observations, $\mathrm{y}^{\mathbf{0}}$?

$$
J(\mathbf{x})=\frac{1}{2}\left(\mathbf{x}-\mathbf{x}^{\mathrm{b}}\right)^{T} \mathbf{B}^{-1}\left(\mathbf{x}-\mathbf{x}^{\mathrm{b}}\right)+\frac{1}{2}\left[\mathbf{y}^{\mathrm{o}}-H(\mathbf{x})\right]^{T} \mathbf{R}^{-1}\left[\mathbf{y}^{\mathrm{o}}-H(\mathbf{x})\right]
$$

Distance to forecast $\left(\mathrm{J}_{\mathrm{b}}\right) \quad$ Distance to observations $\left(\mathrm{J}_{\mathrm{o}}\right)$

$$
\nabla J\left(\mathbf{x}^{\mathrm{a}}\right)=0 \text { at } J\left(\mathbf{x}^{\mathrm{a}}\right)=J_{\min }
$$

\square find the solution in 3D-Var
Directly set $\nabla J\left(\mathbf{x}^{\mathrm{a}}\right)=0$ and solve

$$
\begin{equation*}
\left(\mathbf{B}^{-1}+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}\right)\left(\mathbf{x}^{\mathrm{a}}-\mathbf{x}^{\mathrm{b}}\right)=\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}\left[\mathbf{y}^{\mathrm{o}}-H\left(\mathbf{x}^{\mathrm{b}}\right)\right] \tag{Eq.5.5.9}
\end{equation*}
$$

Usually solved as

$$
\left(\mathbf{I}+\mathbf{B} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}\right)\left(\mathbf{x}^{\mathrm{a}}-\mathbf{x}^{\mathrm{b}}\right)=\mathbf{B} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}\left[\mathbf{y}^{\mathrm{o}}-H\left(\mathbf{x}^{\mathrm{b}}\right)\right]
$$

Minimize the cost function, $J(\mathrm{x})$

A descent algorithm is used to find the minimum of the cost function.

This requires the gradient of the cost function, ∇J.

$$
\delta J \approx\left[\frac{\partial J}{\partial x}\right]^{T} \cdot \delta x ; \quad \nabla J=\frac{\partial J}{\partial x}
$$

Ex: "steepest descent" method

4D-Var

$J(\mathbf{x})$ is generalized to include observations at different times.

Find the initial condition such that its forecast best fits the observations within the assimilation interval

$$
\left.J\left(\mathrm{x}\left(t_{0}\right)\right)=\frac{1}{2}\left[\mathbf{x}\left(t_{0}\right)-\mathbf{x}^{\mathrm{b}}\left(t_{0}\right)\right]^{T} \mathbf{B}_{0}^{-1}\left[\mathbf{x}\left(t_{0}\right)-\mathbf{x}^{\mathrm{b}}\left(t_{0}\right)\right]+\frac{1}{2} \sum_{i=0}^{i=N} \mathbf{y}_{\mathrm{i}}^{\mathrm{o}}-H\left(\mathbf{x}_{\mathrm{i}}\right)\right]^{T} \mathbf{R}_{\mathrm{i}}^{-1}\left[\mathbf{y}_{\mathrm{i}}^{\mathbf{o}}-H\left(\mathbf{x}_{\mathrm{i}}\right)\right]
$$

Need to define $\nabla J\left(\mathbf{x}\left(t_{0}\right)\right)$ in order to minimize $J\left(\mathbf{x}\left(t_{0}\right)\right)$

Separate $J\left(x\left(t_{0}\right)\right)$ into "background" and "observation" terms

$$
J=J_{b}+J_{o}, \quad \frac{\partial J}{\partial \mathrm{x}\left(t_{0}\right)}=\frac{\partial J_{b}}{\partial \mathrm{x}\left(t_{0}\right)}+\frac{\partial J_{o}}{\partial \mathrm{x}\left(t_{0}\right)}
$$

First, let's consider $J_{\mathrm{b}}\left(\mathbf{x}\left(t_{0}\right)\right)$
Given a symmetric matrix \mathbf{A}, and
a function $J=\frac{1}{2} \mathbf{x}^{T} \mathbf{A x}$, the gradient is given by $\frac{\partial J}{\partial \mathbf{x}}=\mathbf{A y}$

$$
J_{b}=\frac{1}{2}\left[\mathrm{x}\left(t_{0}\right)-\mathrm{x}^{b}\left(t_{0}\right)\right]^{T} \mathrm{~B}^{-1}\left[\mathrm{x}\left(t_{0}\right)-\mathrm{x}^{b}\left(t_{0}\right)\right] \square \frac{\partial J_{b}}{\partial \mathbf{x}\left(t_{0}\right)}=\mathbf{B}^{-1}\left[\mathbf{x}\left(t_{0}\right)-\mathbf{x}^{b}\left(t_{0}\right)\right]
$$

$\nabla \mathrm{J}_{0}$ is more complicated, because it involves the integration of the model:

$$
J_{o}=\frac{1}{2} \sum_{i=0}^{N}\left[H\left(\mathrm{x}_{i}\right)-\mathrm{y}_{i}^{o}\right] \mathrm{R}_{\mathrm{i}}^{-1}\left[H\left(\mathrm{x}_{i}\right)-\mathrm{y}_{i}^{o}\right]
$$

If $J=\mathbf{y}^{T} \mathbf{A} \mathbf{y}$ and $\mathbf{y}=\mathbf{y}(\mathbf{x})$, then $\frac{\partial J}{\partial \mathbf{x}}=\left[\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right]^{T} \mathbf{A x}$, where $\left[\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right]_{k, l}=\frac{\partial y_{k}}{\partial x_{l}}$ is a matrix.

$$
\begin{gathered}
\frac{\partial\left(H\left(\mathrm{x}_{i}\right)-y_{i}^{o}\right)}{\partial \mathrm{x}_{0}}=\frac{\partial H}{\partial \mathrm{x}_{i}} \frac{\partial M_{i}}{\partial \mathrm{x}_{0}}=\mathbf{H}_{i} \mathbf{L}\left(t_{0}, t_{i}\right)=\mathbf{H}_{i} \mathbf{L}_{i-1} \mathbf{L}_{i-2} \cdots \mathbf{L}_{0} \\
{\left[\mathbf{H}_{\mathbf{i}} \mathbf{L}_{\mathbf{i}-1} \mathbf{L}_{\mathbf{i}-2} \ldots \mathbf{L}_{\mathbf{0}}\right]^{T}=\mathbf{L}_{0}^{T} \cdots \mathbf{L}_{i-2}^{T} \mathbf{L}_{i-1}^{T} \mathbf{H}_{i}^{T}=\mathbf{L}^{T}\left(t_{i}, t_{0}\right) \mathbf{H}_{i}^{T}} \\
{\left[\frac{\partial J_{o}}{\partial \mathrm{x}\left(t_{0}\right)}\right]=\sum_{i=0}^{\mathrm{N}} \mathrm{~L}^{T}\left(t_{0}, t_{i}\right) \mathrm{H}_{i}^{T} \mathbf{R}_{i}^{-1}\left[H\left(\mathrm{x}_{i}\right)-\mathrm{y}_{i}^{o}\right]} \\
\text { Adjoint model integrates } \\
\text { increment backwards to } \mathrm{t}_{0}
\end{gathered} \quad \begin{aligned}
& \text { weighted increment at } \\
& \text { observation time, } \mathrm{t}_{i}, \text { in } \\
& \text { model coordinates }
\end{aligned}
$$

Simple example:
Use the adjoint model to integrate backward in time

$\begin{array}{lll}\partial_{0} / \partial \mathbf{x}_{0} & \overline{\mathbf{d}}_{0}+\mathbf{L}_{0}^{T}\left(\overline{\mathbf{d}}_{1}+\mathbf{L}_{1}^{T}\left(\overline{\mathbf{d}}_{2}+\mathbf{L}_{2}^{T}\left(\overline{\mathbf{d}}_{3}+\mathbf{L}_{3}^{T} \overline{\mathbf{d}}_{4}\right)\right)\right) & \overline{\mathbf{d}}_{i}=\mathbf{H}_{i}^{T} \mathbf{R}_{i}^{-1}\left[H\left(\mathbf{x}_{i}\right)-\mathbf{y}_{i}^{o}\right] \\ \partial J_{\mathrm{b}} / \partial \mathbf{x}_{0}{ }_{0} \mathbf{B}_{0}^{-1}\left[\mathbf{x}\left(t_{0}\right)-\mathbf{x}^{b}\left(t_{0}\right)\right] & \begin{array}{l}\text { Start from } \\ \text { the end! }\end{array} & \end{array}$

- In each iteration, ∇J is used to determine the direction to search the $J_{\text {min }}$.
- 4D-Var provides the best estimation of the analysis state and error covariance is evolved implicitly.

3D-Var vs. 4D-Var

1. 4D-Var assumes a perfect model. It will give the same credence to older observations as to newer observations.

- algorithm modified by Derber (1989)

2. Background error covariance is time-independent in 3DVar, but evolves implicitly in 4D-Var.
3. In 4D-Var, the adjoint model is required to compute ∇J.

Practical implementation: use the incremental form

$$
\begin{aligned}
& J\left(\delta \mathbf{x}_{0}\right)=\frac{1}{2}\left(\delta \mathbf{x}_{0}\right)^{T} \mathbf{B}_{0}^{-1} \delta \mathbf{x}_{0}+\frac{1}{2} \sum_{i=0}^{N}\left[H_{i} \mathbf{L}\left(t_{0}, t_{i}\right) \delta \mathbf{x}_{0}-\mathbf{d}_{i}^{o}\right]^{T} \mathbf{R}^{-1}\left[H_{i} \mathbf{L}\left(t_{0}, t_{i}\right) \delta \mathbf{x}_{0}-\mathbf{d}_{i}^{o}\right] \\
& \quad \text { where } \delta \mathbf{x}=\mathbf{x}-\mathbf{x}_{b} \text { and } \mathbf{d}=\mathbf{y}_{o}-H(\mathbf{x})
\end{aligned}
$$

With this form, it is possible to choose a "simplification operator, \mathbf{S} " to solve the cost function in a low dimension space (change the control variable).
Now, $\delta \mathbf{w}=\mathbf{S} \delta \mathbf{x}$ and minimize $J(\delta \mathbf{w})$

The choice of the simplification operator

- Lower resolution
- Simplification of physical process

Example of using simplification operator

Example with the Lorenz 3-variable model

$$
\begin{aligned}
& \begin{array}{l}
\text { Nonlinear model } \\
\mathbf{x}=\left[x_{1}, x_{2}, x_{3}\right] \\
\frac{d x_{1}}{d t}=-p x_{1}+p x_{2} \\
\frac{d x_{2}}{d t}=r x_{1}-x_{1} x_{3}-x_{2} \\
\frac{d x_{3}}{d t}=x_{1} x_{2}-b x_{3}
\end{array}
\end{aligned}
$$

- The background state is needed in both \mathbf{L} and \mathbf{L}^{T} (need to save the model trajectory)
- In a complex NWP model, it is impossible to write explicitly this matrix form

Example of tangent linear and adjoint codes (1)

use forward scheme to integrate in time
In tangent linear model
$\frac{\delta x_{3}(t+\Delta t)-\delta x_{3}(t)}{\Delta t}=x_{2}(t) \delta x_{1}(t)+x_{1}(t) \delta x_{2}(t)-b \delta x_{3}(t)$
$\delta x_{3}(t+\Delta t)=\delta x_{3}(t)+\left[x_{2}(t) \delta x_{1}(t)+x_{1}(t) \delta x_{2}(t)-b \delta x_{3}(t)\right] \Delta t \quad$ forward in time

We will see that in the adjoint model the above line becomes

$$
\begin{aligned}
& \delta x_{3}^{*}(t)=\delta x_{3}^{*}(t)+(1-b \Delta t) \delta x_{3}^{*}(t+\Delta t) \\
& \delta x_{2}^{*}(t)=\delta x_{2}^{*}(t)+\left(x_{1}(t) \Delta t\right) \delta x_{3}^{*}(t+\Delta t) \\
& \delta x_{1}^{*}(t)=\delta x_{1}^{*}(t)+\left(x_{2}(t) \Delta t\right) \delta x_{3}^{*}(t+\Delta t) \\
& \delta x_{3}^{*}(t+\Delta t)=0
\end{aligned}
$$

Example of tangent linear and adjoint codes (2)

use forward scheme to integrate in time

Tangent linear model,

$$
\delta x_{3}(t+\Delta t)=\delta x_{3}(t)+\left[x_{2}(t) \delta x_{1}(t)+x_{1}(t) \delta x_{2}(t)-b \delta x_{3}(t)\right] \Delta t \quad \text { forward in time }
$$

$$
\left[\begin{array}{c}
\delta x_{3}(t+\Delta t) \\
\delta x_{1}(t) \\
\delta x_{2}(t) \\
\delta x_{3}(t)
\end{array}\right]=\left[\begin{array}{cccc}
0 & x_{2}(t) \Delta t & x_{1}(t) \Delta t & (1-b \Delta t) \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\delta x_{3}(t+\Delta t) \\
\delta x_{1}(t) \\
\delta x_{2}(t) \\
\delta x_{3}(t)
\end{array}\right]
$$

We have to write for each statement all the "active" variables.
Then we transpose it to get the adjoint model

Example of tangent linear and adjoint codes (3)

Tangent linear model,

$$
\begin{gathered}
\delta x_{3}(t+\Delta t)=\delta x_{3}(t)+\left[x_{2}(t) \delta x_{1}(t)+x_{1}(t) \delta x_{2}(t)-b \delta x_{3}(t)\right] \Delta t \quad \text { forward in time } \\
{\left[\begin{array}{c}
\delta x_{3}(t+\Delta t) \\
\delta x_{1}(t) \\
\delta x_{2}(t) \\
\delta x_{3}(t)
\end{array}\right]=\left[\begin{array}{cccc}
0 & x_{2}(t) \Delta t & x_{1}(t) \Delta t & (1-b \Delta t) \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\delta x_{3}(t+\Delta t) \\
\delta x_{1}(t) \\
\delta x_{2}(t) \\
\delta x_{3}(t)
\end{array}\right]} \\
{\left[\begin{array}{c}
\delta x_{3}^{*}(t+\Delta t) \\
\delta x_{1}^{*}(t) \\
\delta x_{2}^{*}(t) \\
\delta x_{3}^{*}(t)
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
x_{2}(t) \Delta t & 1 & 0 & 0 \\
x_{1}(t) \Delta t & 0 & 1 & 0 \\
(1-b \Delta t) & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\\
\delta x_{3}^{*}(t+\Delta t) \\
\delta x_{1}^{*}(t) \\
\delta x_{2}^{*}(t) \\
\delta x_{3}^{*}(t)
\end{array}\right]}
\end{gathered}
$$

Adjoint model: transpose of the linear tangent, backward in time
Execute in reverse order

Example of tangent linear and adjoint codes (4)

$$
\delta x_{3}(t+\Delta t)=\delta x_{3}(t)+\left[x_{2}(t) \delta x_{1}(t)+x_{1}(t) \delta x_{2}(t)-b \delta x_{3}(t)\right] \Delta t
$$

Adjoint model: transpose of the linear tangent, backward in time
Execute in reverse order

$$
\left[\begin{array}{c}
\delta x_{3}^{*}(t+\Delta t) \\
\delta x_{1}^{*}(t) \\
\delta x_{2}^{*}(t) \\
\delta x_{3}^{*}(t)
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
x_{2}(t) \Delta t & 1 & 0 & 0 \\
x_{1}(t) \Delta t & 0 & 1 & 0 \\
(1-b \Delta t) & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\delta x_{3}^{*}(t+\Delta t) \\
\delta x_{1}^{*}(t) \\
\delta x_{2}^{*}(t) \\
\delta x_{3}^{*}(t)
\end{array}\right]
$$

In adjoint model the line above becomes

$$
\begin{aligned}
& \delta x_{3}^{*}(t)=\delta x_{3}^{*}(t)+(1-b \Delta t) \delta x_{3}^{*}(t+\Delta t) \\
& \delta x_{2}^{*}(t)=\delta x_{2}^{*}(t)+\left(x_{1}(t) \Delta t\right) \delta x_{3}^{*}(t+\Delta t) \\
& \delta x_{1}^{*}(t)=\delta x_{1}^{*}(t)+\left(x_{2}(t) \Delta t\right) \delta x_{3}^{*}(t+\Delta t) \\
& \delta x_{3}^{*}(t+\Delta t)=0
\end{aligned}
$$

backward in time

RMS error of 3D-Var and 4D-Var in Lorenz model

Experiments: DA cycle and observations: $8 \Delta t, \mathbf{R}=2 * \mathbf{I}$ 4D-Var assimilation window: $24 \Delta t$

RMS errors after DA, observing x, y and z

Evans et al., BAMS, 2004

4D-Var in the Lorenz model (Kalnay et al., 2005)

	Win=8	16	24	32	40	48	56	64	72
Fixed window	0.59	0.59	0.47	0.43	0.62	0.95	0.96	0.91	0.98
Start with short window	0.59	0.51	0.47	0.43	0.42	0.39	0.44	0.38	0.43

Impact of the window length

- Lengthening the assimilation window reduces the RMS analysis error up 32 steps.
- For the long windows, error increases because the cost function has multiple minima.
- This problem can be overcome by the quasi-static variational assimilation approach (Pires et al, 1996), which needs to start from a shorter window and progressively increase the length of the window.

Schematic of multiple minima and increasing window size (Pires et al, 1996)

Dependence of the analysis error on B_{0}

Win=8	$B=\infty$	$\mathrm{B}_{3 \mathrm{D}-\mathrm{Var}}$	$\begin{aligned} & 50 \% \\ & \mathrm{~B}_{3 \mathrm{D}-\mathrm{Var}} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 40 \% \\ \mathrm{~B}_{3 \mathrm{D}-\mathrm{Var}} \\ \hline \end{array}$	$\begin{aligned} & 30 \% \\ & \mathrm{~B}_{3 \mathrm{D}-\mathrm{Var}} \end{aligned}$	$\begin{aligned} & 20 \% \\ & \mathrm{~B}_{3 \mathrm{D}-\mathrm{Var}} \end{aligned}$	$\begin{aligned} & 10 \% \\ & \mathrm{~B}_{3 \mathrm{D}-\mathrm{Var}} \end{aligned}$	$\begin{aligned} & 5 \% \\ & B_{3 D-V a r} \end{aligned}$
RMSE	0.78	0.59	0.53	0.52	0.50	0.51	0.65	>2.5

Dependence of the analysis error on the B_{0}

- Since the forecast state from 4D-Var will be more accurate than 3D-Var, the amplitude of B should be smaller than the one used in 3D-Var.
- Using a covariance proportional to $\mathrm{B}_{3 \mathrm{D}-\mathrm{Var}}$ and tuning its amplitude is a good strategy to estimate B.

