
Advanced data assimilation methods
with evolving forecast error covariance

Four-dimensional variational analysis
(4D-Var)

Shu-Chih Yang (with EK)



Find the optimal analysis

• Least squares approach
Find the optimal weights to minimize the analysis error covariance
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• Variational approach
Find the analysis that will minimize a cost function, measuring its
distance to the background and to the observation
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Best estimate the true value

Both methods give the same Ta !



  J(x)=    (x-xb)TB-1(x-xb) +   [yo-H(x)]TR-1[yo-H(x)]

 ∇J(xa)=0 at J(xa)=Jmin   

3D-Var

Distance to forecast (Jb) Distance to observations (Jo)
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How do we find an optimum analysis of a 3-D field of model
variable xa, given a background field, xb, and a set of
observations, yo?

 find the solution in 3D-Var

Directly set ∇J(xa)=0 and solve
              (B-1+HTR-1H)(xa-xb)=HTR-1[yo-H(xb)]              (Eq. 5.5.9)

Usually solved as

              (I+ B HTR-1H)(xa-xb)=   B HTR-1[yo-H(xb)]



� 

!J "
#J

#x

$ 

% 
& 

' 

( 
) 

T

* !x;    +J =
#J

#x

Minimize the cost function, J(x)
A descent algorithm is used to find the minimum of
the cost function.

This requires the gradient of the cost function, ∇J.

×
-∇J(xµ)
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+1)
J(xµ)

J(xµ+1)

min

Ex: “steepest descent” method



4D-Var

J(x(t0))=   [x(t0)-xb(t0)]
TB0

-1[x(t0)-xb(t0)]+      [yo
i-H(xi)]

TRi
-1[yo

i-H(xi)]

Need to define  ∇J(x(t0))  in order to minimize J(x(t0))
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Find the initial condition such that its
forecast best fits the observations
within the assimilation interval

assimilation window
t0 tnti

yo

yo

yo


yo

previous forecast

xb corrected forecast
xa

J(x) is generalized to include observations at different times.
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Given a symmetric matrix A, and

a function               , the gradient is given by
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First, let’s consider Jb(x(t0))

Separate J(x(t0)) into “background” and “observation” terms
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∇Jo is more complicated, because it involves the
integration of the model:
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weighted increment at
observation time, ti, in
model coordinates

 If  J = yTAy and y = y(x), then                    ,

 where                   is a matrix.
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Adjoint model integrates
increment backwards to t0
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• In each iteration, ∇J is used to determine the
direction to search the Jmin.

• 4D-Var provides the best estimation of the
analysis state and error covariance is evolved
implicitly.

Simple example:
Use the adjoint model to integrate backward in time

Start from
the end!
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1. 4D-Var assumes a perfect
model. It will give the same
credence to older
observations as to newer
observations.
• algorithm modified by

Derber (1989)
2. Background error covariance

is time-independent in 3D-
Var, but evolves implicitly in
4D-Var.

3.  In 4D-Var, the adjoint model
is required to compute ∇J.

Figure from http://www.ecmwf.int/

3D-Var vs. 4D-Var



With this form, it is possible to choose a “simplification
operator, S” to solve the cost function in a low dimension
space (change the control variable).
Now, δw=Sδx  and minimize J(δw)

  where                      and

Practical implementation: use the incremental form

The choice of the simplification operator
• Lower resolution
• Simplification of physical process 

� 

J(!x
0
) =
1

2
(!x

0
)
T
B
0

"1
!x

0
+
1

2
[H

i
L(t

0
,t
i
)!x

0
"d

i

o
]
T
R

"1

i= 0

N

# [H
i
L(t

0
,t
i
)!x

0
"d

i

o
]

� 

!x = x " x
b

� 

d = yo !H(x)



Example of using simplification operator

Both TLM and ADJ use a 
low resolution and also 
simplified physics due to 
the limitation of the 
computational cost.



Example with the Lorenz 3-variable model

• The background state is needed in both L and LT

(need to save the model trajectory)
• In a complex NWP model, it is impossible to write

explicitly this matrix form
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Tangent linear model
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In tangent linear model

 forward in time

We will see that in the adjoint model the above line becomes

                                                                                    

                                                                            backward in time

Example of tangent linear and adjoint codes (1)
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* Try an example in Appendix B (B.1.15)

use forward scheme to integrate in time



Tangent linear model,

                                                                                            forward in time

Example of tangent linear and adjoint codes (2)
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use forward scheme to integrate in time
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We have to write for each statement all the “active” variables.

Then we transpose it to get the adjoint model



Tangent linear model,

                                                                                            forward in time

Example of tangent linear and adjoint codes (3)
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Adjoint model: transpose of the linear tangent, backward in time

Execute in reverse order



Example of tangent linear and adjoint codes (4)
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Adjoint model: transpose of the linear tangent, backward in time

Execute in reverse order

In adjoint model the line above becomes

                                                                                    

                                                                            backward in time
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RMS error of 3D-Var and 4D-Var in Lorenz model

Experiments: DA cycle and observations: 8Δt, R=2*I
                      4D-Var assimilation window: 24Δt

observation error

3DVar

4DVar

Evans et al.,
BAMS, 2004



4D-Var in the Lorenz model (Kalnay et al., 2005)

Impact of the window length

0.430.380.440.390.420.430.470.510.59Start with
short window

0.980.910.960.950.620.430.470.590.59Fixed window

7264564840322416Win=8

• Lengthening the assimilation window reduces the RMS
analysis error up 32 steps.

• For the long windows, error increases because the cost
function has multiple minima.

• This problem can be overcome by the quasi-static
variational assimilation approach (Pires et al, 1996),
which needs to start from a shorter window and
progressively increase the length of the window.



Schematic of multiple minima and increasing window
size (Pires et al, 1996)
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Dependence of the analysis error on B0

Dependence of the analysis error on the B0
•Since the forecast state from 4D-Var will be more accurate
than 3D-Var, the amplitude of B should be smaller than the one
used in 3D-Var.
• Using a covariance proportional to B3D-Var and tuning its
amplitude is a good strategy to estimate B.

>2.50.650.510.500.520.530.590.78RMSE
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B3D-VarB=∞Win=8


