Advanced data assimilation methods
with evolving forecast error covariance

Four-dimensional variational analysis
(4D-Var)
Shu-Chih Yang (with EK)



Find the optimal analysis

1, =T +¢ (forecast)

I, =1, + &, (observation)

Best estimate the true value

« Least squares approach
Find the optimal weights to minimize the analysis error covariance

2 2
o o
I,=|— : > it 21 2 tt2
(51+(52 (51+G2

« Variational approach

Find the analysis that will minimize a cost function, measuring its
distance to the background and to the observation
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Both methods give the same T_!



3D-Var

How do we find an optimum analysis of a 3-D field of model
variable x*, given a background field, x, and a set of
observations, y°?

Jx)=2 (x-x?)' B (x-x°) + 2 [y-H(x)] 'R [y*-H(x)]

Distance to forecast (J,) Distance to observations (J,)
VJ(x)=0 at J(x?)=J_._

1 find the solution in 3D-Var

Directly set VJ(x?)=0 and solve
(B''+H'R-'H)(x?-x?)=HTR-![y°>-H(x")] (Eq. 5.5.9)
Usually solved as

(I+ B H'R-'H)(x?-x°)= B H'R-!'[y°-H(x%)]



Minimize the cost function, J(x)

A descent algorithm is used to find the minimum of
the cost function.

This requires the gradient of the cost function, VJ.
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Ex: “steepest descent” method




4D-Var

J(x) is generalized to include observations at different times.
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Jx(1)= J[x(1)-x(10)] By [x(10)x°(tg) 1+ S Xy HO)TR; [y H(x,)

Need to define VJ(x(¢,)) in order to minimize J(x(¢,))



Separate J(x(¢,)) into “background” and “observation” terms

aJ  dJ, N aJ,
ox(t,) oJx(t,) ox(t,)

J=J,+J,

First, let’s consider J,(x(¢,))
Given a symmetric matrix A, and

a functionJ = %XTAX , the gradient 1s given by ? = Ay
X

1 Ay _ g ;
Jb:E[X(to)—Xb(to)]TB_l[X(tO)—Xb(to)]\_> oy B ) =X )]




VJ, is more complicated, because it involves the
integration of the model:

1 < 1
= EZ[H(XZ)_YZO]RI [H(Xi)_YiO]

If J=vyTAy and then % _| ¥ | A,
y'Ay and y = y(x), en 2o= | A
8yk

where L aXJ —% 1S a matrix.
Xi:Mi[X(tO)]
IO =3 OH M, g Lty 1)=HL, L, L,
8X0 &Xi 8XO

(HL, L., L =L,---L_L_H =L"(,7,)H

dJ A
2 :EI,T JH'R'[H(x)-Yy’
[8X(Z‘O)} p_— (t()’tl) i i [ (Xl) yl ]

weighted increment at
observation time, t, in
model coordinates

Adjoint model integrates
increment backwards to t,



Simple example:
Use the adjoint model to integrate backward in time

t, t, t, t, t,
F 1 T T 1
dO dl d2 d3 d4

dl Jodxy | dy +Li(d +Li(d, + L3(d, +L’d,))) d =H R'[H(x,)-y/]
.

A Joxy | By Tx(ty) - X" (1,)] W
the end!

* [n each iteration, VJ is used to determine the

direction to search the J_...
* 4D-Var provides the best estimation of the
analysis state and error covariance is evolved

implicitly.




3D-Var vs. 4D-Var
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Figure from http://www.ecmwf.int/

4D-Var assumes a perfect
model. It will give the same
credence to older
observations as to newer
observations.
« algorithm modified by
Derber (1989)

. Background error covariance

is time-independent in 3D-
Var, but evolves implicitly in
4D-Var.

In 4D-Var, the adjoint model
is required to compute VJ.



Practical implementation: use the incremental form

N
J(6x,) = %(5XO)TBOI5XO + %Z[HiL(tO,ti)SXO —d°T"R'[H L(t,,1,)6x, —d]
i=0

where ox=x-x,and d=y,6 — H(x)

With this form, it is possible to choose a “simplification
operator, S” to solve the cost function in a low dimension
space (change the control variable).

Now, ow=Sox and minimize J(ow)

The choice of the simplification operator
» Lower resolution

« Simplification of physical process



Outer loop

————

Example of using simplification operator

Iog =Ty
Y
zy —— ——>  High resolution non linear trajectory
-\D‘epartures d=y —H(n)
“» S(r) > Low resolution non linchr trajectory
dry=0 'I}:ajocmry
(
] 4
2‘ Low resolution linear model — J
£ Low tesolution adjoint maodel —»YJ

Iterative minimisation algorithm

Ty =24+ 8 H{dzy)

Ta
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High resolution non lincar forccast

Both TLM and ADJ use a
low resolution and also
simplified physics due to
the limitation of the
computational cost.



Example with the Lorenz 3-variable model
Nonlinear model Tangent linear model Adjoint model
X=[x,%,,%;] Ox=[0x,, 0x,, Ox;] ox"=[ox", ox’,, ox™;]

dx !

—~ =—px, + px, L:aM — oM 17 :{aﬂ}

dt ox  ox, ox,

dx, B ] B ]

SN TN -» p O —p r=X3 X

) =lr—x; -1 —x =l P -1 x
X3

E = x,Xx, —bx, | X, x;, —b | 0 —X; —b |

* The background state is needed in both L and L!

(need to save the model trajectory)
* In a complex NWP model, it is impossible to write

explicitly this matrix form




Example of tangent linear and adjoint codes (1)

use forward scheme to integrate in time

In tangent linear model

5X3([+AA[2—5X3(1‘) _ xz(t)5x1(f)+ xl(t)éxz(t)—b6x3(t)

Ox (14 At) = 0x, (1) + [x,(£)0x (1) + x,(£)Ox, (1) — b Ox, (1) ]At

forward in time

We will see that in the adjoint model the above line becomes

Sx,(t) = Ox,(t) + (1— bAt)Sx,(t + At)

8x,(1) = 8x, (1) + (x,(DANSX, (1 + Ar)

Sx (1) = 6x; (1) + (x, (1) A)Sx, (¢ + Ar) backward in time
Sx,(t+At)=0




Example of tangent linear and adjoint codes (2)

use forward scheme to integrate in time

Tangent linear model,
Ox (1 + At) = 6x,(t) + [x,(1)0x (1) + x,(1)0x,(t) — bOx,(1)]Ar  forward in time

Ox,(t+ A [0 x,()At x,()At  (1=bAt) |[ 8x,(t + Ar) ]
Ox, (1) 10 1 0 0 Ox, (1)
Sx,(t) | |0 0 1 0 5x, (1)
ox,(t) | |0 0 0 1 | 6x(0)

We have to write for each statement all the “active” variables.

Then we transpose it to get the adjoint model




Example of tangent linear and adjoint codes (3)

Tangent linear model,

Ox ,(t + At) = 0x,(t)+ [x,(t)0x (¢) + x,(t)Ox, (1) — bOx, (1) At

forward in time

Ox,(t+ A [0 x,()Ar x,(t)At  (1—bAt)|[ 6x,(t + Ar) ]
ox, (1) 10 1 0 0 ox, (1)
Sx,(t) | |0 0 1 0 5x, (1)

| ox;(r) | |0 0 0 1] ox;(0)

Sxi(t+AD)| [0 0 0 O[6xi(t+Ar)]
8x (1) x,(OAt 1 0 0 Sx, (t)
8, (1) xMAt 0 1 0] 6x,)
Sx,(1) (1-bA1) 0 0 1] &x00)

Execute in reverse order

Adjoint model: transpose of the linear tangent, backward in time




Example of tangent linear and adjoint codes (4)
Ox ,(t + At) = 0x,(t) + [x,(£)0x (1) + x,(t)Ox, (1) — bOx,(1)] At

Adjoint model: transpose of the linear tangent, backward in time

Execute in reverse order

[ Sxi(t+ A1) 0 0 0
Sx,(t) | | A 1 0
Sx.t) | | x@®Ar 0 1
Sxy(t) | [(1-bAr) 0 0

- o O O

[ Sxi(t+ A1) |

Sx, (1)
6, (1)

6x; (1)

Ox,(t) = O6x,(t) + (1 — bAt)Sx,(t + Ar)
Sx, (1) = 8x,(¢) + (x, (1) At)Ox, (¢ + At)
Ox, (1) = 8x, (1) + (x,(t)At)Sx, (¢ + At)
Sx,(t+At)=0

In adjoint model the line above becomes

backward in time




RMS error of 3D-Var and 4D-Var in Lorenz model

Error

X values, colored with BV growth rate

Experiments: DA cycle and observations: 8Az, R=2*1
4D-Var assimilation window: 24 At

RMS errors after DA, observing x,y and z
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4D-Var in the Lorenz model (Kalnay et al., 2005)

Win=8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72
Fixed window | 0.59 | 059 | 0.47 | 043 | 062 | 095 | 096 | 091 | 0.98
Startwith 59 | 051 | 047 | 043 | 042 | 039 | 044 | 038 | 043

short window

Impact of the window length
* Lengthening the assimilation window reduces the RMS

analysis error up 32 steps.

 For the long windows, error increases because the cost
function has multiple minima.
 This problem can be overcome by the quasi-static

variational assimilation approach (Pires et al, 1996),

which needs to start from a shorter window and
progressively increase the length of the window.




Schematic of multiple minima and increasing window
size (Pires et al, 1996)

J(x)




Dependence of the analysis error on B,

Win=8 |B=o |Bsyy. |50% |40% [30% |20% |10% |5%
B3D—Var B3D—Var B3D—Var B3D—Var B3D—Var B3D—Var
RMSE |0.78 0.59 0.53 0.52 0.50 0.51 0.65 [>2.5

Dependence of the analysis error on the B,
*Since the forecast state from 4D-Var will be more accurate
than 3D-Var, the amplitude of B should be smaller than the one

used in 3D-Var.

* Using a covariance proportional to B, ., and tuning its
amplitude is a good strategy to estimate B.




