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Purpose of assimilation : reconstruct as accurately as possible the state of
the atmospheric or oceanic flow, using all available appropriate
information. The latter essentially consists of

 The observations proper, which vary in nature, resolution and
accuracy, and are distributed more or less regularly in space and time.

 The physical laws governing the evolution of the flow, available in
practice in the form of a discretized, and necessarily approximate,
numerical model.

 ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes.
Although they basically are necessary consequences of the physical laws which govern the
flow, these properties can usefully be explicitly introduced in the assimilation process.
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Validation must therefore aim primarily at determining, as far as
possible, the accuracy with which assimilation reconstructs the
state of the flow. In particular, if one wants to compare two different
assimilation procedures, the ultimate test lies in the comparison of
the accuracies with which those two procedures reconstruct the
flow.

Now, the state of the flow is not perfectly known, and the output of
an assimilation process is precisely meant to be the best possible
estimate of that state. So there is a circular argument there.
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But there is another aspect to evaluation of an assimilation
process. Does the process make the best possible use of the
available information ? This is totally distinct from the accuracy with
which the process reconstructs the state of the flow. We will
distinguish numerical accuracy from optimality (the property that
the process makes the best possible use of the available
information).
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Objective validation of assimilation can only be statistical, and must be
made against observations (or data) that are unbiased, and are affected
by errors that are statistically independent of the errors affecting the
data used in the assimilation.

Amplitude of forecast error, if estimated against observations that are really
independent of observations used in assimilation, is an objective measure of
accuracy of assimilation.

But neither the unbiasedness nor the ‘independence’ of the verifying
observations can be objectively verified, at least within the world of data and
assimilation. External knowledge must be used.
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Best Linear Unbiased Estimate
State vector x, belonging to state space S (dimS = n), to be estimated.
Available data in the form of

 A ‘background’ estimate, belonging to state space, with dimension
n

xb  =  x  + ζb

 An additional set of data (e. g. observations), belonging to observation
space, with dimension p

y  =  Hx + ε

H is known linear observation operator.
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Best Linear Unbiased Estimate (continuation 2)

Assume E(ζb) = 0, E(ε) = 0
Set d ≡ y - Hxb (innovation vector)

xa = xb - E(ζbdT) [E(ddT)]-1 (y - Hxb)
Pa =E(ζbζbT) - E(ζbdT) [E(ddT)]-1 E(dζbT)

 Assume E(ζbεT) = 0 (not restrictive). Set E(ζbζbT) = Pb (also often denoted B), E(εεT) = R

xa = xb + Pb
 HT

 [HPbHT + R]-1 (y - Hxb)
Pa = Pb

 - Pb
 HT

 [HPbHT + R]-1 HPb

 xa is the Best Linear Unbiased Estimate (BLUE) of x from xb and y.

If probability distributions are globally gaussian, BLUE achieves bayesian estimation, in the sense
that P(x | xb, y) = ! [xa, Pa].

Determination of the BLUE requires (at least apparently) the a priori specification of the expectation
and covariance matrix, i. e. the statistical moments of orders 1 and 2 of the errors. The expectation is
required for unbiasing the data in the first place.
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Questions

 Is it possible to objectively evaluate the accuracy of an
assimilation system ?

 Is it possible to objectively evaluate the first- and second-
order statistical moments of the data errors, whose
specification is required for determining the BLUE ?

 Is it possible to objectively determine whether an assimilation
system is optimal  (i. e., in the case of the BLUE, whether it
uses the correct error statistics) ?

 More generally, how to make the best of an assimilation
system ?
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xb  =  x  + ζb 
y  =  Hx + ε   

The only combination of the data that is a function of only the error is the
innovation vector

d  =  y - Hxb  =  ε - Hζb

(if H weakly nonlinear, d  =  ε - H’ζb ,where H’ is local jacobian)

Innovation is the only objective source of information on errors. Now innovation
is  a combination of background and observation errors, while determination
of the BLUE requires explicit knowledge of the statistics of both observation
and background errors.

xa = xb + Pb
 HT

 [HPbHT + R]-1 (y - Hxb)

Innovation alone will never be sufficient to determine the required statistics.
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With hypotheses made above

E(d) = 0      ;         E(ddT) = HPbHT + R

Possible to check statistical consistency between a priori assumed and
a posteriori observed statistics of innovation.

Consistency, which will be considered now, is a different quality than
either accuracy or optimality.

Consider assimilation scheme of the form

xa = xb + K(y - Hxb) (1)

with any (i. e. not necessarily optimal) gain matrix K.

 (1)  ⇔ if data are perfect, then so is the estimate xa.
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Take more general approach.
Data assumed to consist of a vector z, belonging to data space D (dimD =

m), in the form

z = Γx + ζ

where Γ is a known (mxn)-matrix, and ζ an unknown ‘error’

For instance
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Look for estimated state vector xa of the form

xa = α + Az

subject to

 invariance in change of origin in state space     ⇒  AΓ = Im

 quadratic estimation error E[(xa
i - xi)2]  minimum for any component xi.
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Solution

xa = (Γ T S-1Γ)-1 Γ T S-1 [z − µ]

Pa ≡ E[(xa - x) (xa - x )T] = (Γ T S-1Γ)-1

where      µ ≡ E(ζ) ,   S ≡ E(ζ’ζ’T) ,   ζ’ ≡  ζ −  µ

Requires (at least apparently) a priori explicit knowledge of Ε(ζ) and E(ζ’ζ’T)

Unambiguously defined iff rankΓ = n. Determinacy condition. Requires m ≥ n.
We shall set m = n + p.

Invariant in any invertible linear change of coordinates, either in data or state space.

In case ζ is gaussian, ζ = ! [µ, S], BLUE achieves bayesian estimation in the sense that P(x | z)
= ! [xa, Pa]



14

If determinacy condition is verified, it is always possible to decompose data vector z into

xb  =  x  + ζb 
y  =  Hx + ε   

with     E(ζb) = 0   ; E(ε) = 0   ; E(εζbT) = 0

xa is the same estimate (BLUE) as before, viz.,

xa = xb + Pa
 HT

 R-1 (y - Hxb)
[Pa]-1 = [Pb]-1

 + HT
 R-1H

xa = xb + Pb
 HT

 [HPbHT + R]-1 (y - Hxb)
Pa = Pb

 - Pb
 HT

 [HPbHT + R]-1 HPb
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Data have been put in the format

xb  =  x  + ζb 
d = y - Hxb = ε - Hζb   

through linear invertible transformation

Assume that, through further linear invertible transformation, I put data in format

 u  =  Cx  + β
 v =  γ

where  C is invertible, and β and γ are functions of the original error ζ only

 u  =  Bxb + Dd
 v =  Exb + Fd

with necessarily EC =  0  ⇒  E =  0

Then v =  Fd, with F invertible

Conclusion. Innovation is much more than observation-minus-background difference, it is what one
obtains by eliminating the unknowns from the data, independently of how elimination is performed.
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Conclusion. Innovation is much more than observation-minus-
background difference, it is what one obtains by eliminating the
unknowns from the data, independently of how elimination is
performed.

Extends to nonlinear situations.
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One particular form of elimination

Linear analysis (whether optimal or not)

 xa  =  x  + ζa

Data-minus-analysis difference

 δ ≡ z - Γxa = -Γζa + ζ  

Data-minus-analysis difference is in one-to-one correspondance with the
innovation.

It is exactly equivalent to compute statistics on either the innovation d or
on the DmA difference δ.
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For perfectly consistent system (i. e., system that uses the exact error
statistics):

E(d) = 0 ( ⇔  E(δ) = 0)

Any systematic bias in either the innovation vector or the DmA difference
is the signature of an inappropriately taken into account bias in either
the background or the observation (or both).

      E[(xb-xa)(xb-xa)T]  =  Pb - Pa

      E[(y - Hxa)(y - Hxa)T]  =  R - HPaHT

A perfectly consistent analysis statistically fits the data to within their own
accuracy.

If new data are added to (removed from) an optimal analysis system, DmA
difference must increase (decrease).
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Also (Desroziers et al., 2006, QJRMS)

 E[H(xa-xb)(y-Hxb) T]  = E[H(xa-xb)dT]  = HPbHT

E[(y-Hxa)(y-Hxb)T]  = E[(y-Hxa)dT]  = R
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Assume inconsistency has been found between a priori assumed and a
posteriori observed statistics of innovation or DmA difference.

- What can be done ?

or, equivalently

- Which bounds does the knowledge of the statistics of innovation put
on the error statistics whose knowledge is required by the BLUE ?
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Come back to global data format

z = Γx + ζ

where Γ is a known (mxn)-matrix, and ζ an unknown ‘error’
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Variational form.

xa minimizes following scalar objective function, defined on state space "

J(ξ)  ≡  (1/2) [Γξ - (z-µ)]T S-1 [Γξ - (z-µ)]

(Mahalanobis S-metric)
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J(ξ)  ≡  (1/2) [Γξ - (z-µ)]T S-1 [Γξ - (z-µ)]

z-µ

Γxa

Γ(")
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Minimizing J(ξ) amounts to

 unbias z

 project orthogonally onto space Γ(") according to Mahalanobis S-metric

 take inverse through Γ (inverse unambiguously defined through determinacy
condition)
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Many assimilation methods

- Optimal Interpolation
- 3DVar, either primal or dual
- Kalman Filter, either in its simple or Extended form
- Kalman Smoother
- 4DVar, either in its strong- or weak-constraint form, or in its primal or dual form

are particular cases of that general scheme.

Only exceptions (so far)

- Ensemble Kalman Filter (which is linear however in its ‘updating’ phase)
- Particle Filters
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Decompose data space D  into image space Γ(") (index 1) and its S-orthogonal space ⊥Γ(") (index 2)

Γ1  invertible

Assume

Then
xa = Γ1 
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xa = Γ1 
-1

 [z1 − µ1]

The probability distribution of the error 

xa - x =  Γ1 
-1

 [ζ1 − µ1]

depends on the probability distribution of ζ1.

On the other hand, the probability distribution of

 δ = (z-µ) - Γxa =

depends only on the probability distribution of ζ2.
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DmA difference, i. e. (z-µ) - Γxa, is in effect ‘rejected’ by the assimilation. Its
expectation and covariance are irrelevant for the assimilation.

Consequence. Any assimilation scheme (i. e., a priori subtracted bias and gain
matrix K) is compatible with any observed statistics of either DmA or
innovation. Not only is not consistency between a priori assumed and a
posteriori observed statistics of innovation (or DmA) sufficient for optimality
of an assimilation scheme, it is not even necessary.
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Example
z1 = x + ζ1
z2 = x + ζ2

Errors ζ1 and ζ2 assumed to be centred (E(ζ1) = E(ζ2) = 0),  to have same variance s and to be mutually
uncorrelated. Then

xa = (1/2) (z1 + z2)
with expected quadratic estimation error

E[(xa-x)2] = s/2

Innovation is difference z1 - z2. With above hypotheses, one expects to observe

E(z1 - z2) = 0 ;  E[(z1 - z2)2] = 2s

Assume one observes

E(z1 - z2) = b ;  E[(z1 - z2)2] = b2 + 2γ

Inconsistency if b  and/or γ s
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Inconsistency can always be resolved by assuming that

E(ζ1) = -E(ζ2) = -b/2

E(ζ’1
2) = E(ζ’2

2) = (s+γ)/2
E(ζ’1ζ’2) = (s-γ)/2

This alters neither the BLUE xa, nor the corresponding quadratic estimation error E[(xa-x)2].
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Explanation. It is not necessary to know explicitly the complete expectation µ and
covariance matrix S in order to perform the assimilation. It is necessary to
know the projection of µ and S onto the subspace Γ("). As for the subspace
that is S-orthogonal to Γ("), it suffices to know what it is, but it is not
necessary to know the projection of µ and S onto it. A number of degrees of
freedom are therefore useless for the assimilation. The parameters determined
by the statistics of d are equal in number to those useless degrees of freedom,
to which any inconsistency between a priori and a posteriori statistics of the
innovation can always mathematically be attributed.

However, it may be that resolving the inconsistency in that way requires
conditions that are (independently) known to be very unlikely, if not simply
impossible. For instance, in the above example, consistency when γ s
requires  the errors ζ1 and ζ2 to be mutually correlated, which may be known to
be very unlikely.
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J(ξ)  ≡  (1/2) [Γξ - (z-µ)]T S-1 [Γξ - (z-µ)]

z-µ

Γxa

Γ(")
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That result, which is purely mathematical, means that the specification of the error statistics
required by the assimilation must always be based, in the last resort, on external
hypotheses, i. e. on hypotheses that cannot be validated on the basis of the innovation
alone. Now, such knowledge always exists in practice.

Problem. Identify hypotheses

 That will not be questioned (errors on observations performed a long distance apart
by radiosondes made by different manufacturers are uncorrelated)

 That sound reasonable, but may be questioned (observation and background errors
are uncorrelated)

 That are undoubtedly questionable (model errors are negligible)

Ideally, define a minimum set of hypotheses such that all remaining undetermined error
statistics can be objectively determined from observed statistics of innovation.
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Objective function

J(ξ)  ≡  (1/2) [Γξ - z]T S-1 [Γξ - z]

Jmin ≡ J(xa)  =  (1/2) [Γxa - z]T S-1 [Γxa - z]

          =  (1/2) dT [E(ddT)]-1 d

⇒      E(Jmin)  =  p/2 (p = dimy = dimd)

If p is large, a few realizations are sufficient for determining E(Jmin)
Often called χ2 criterion.

Remark. If in addition errors are gaussian Var(Jmin)  =  p/2
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Results for ECMWF (January 2003, n = 8 106)

- Operations (p = 1.4 106, has significantly increased since then)

2Jmin /p  =  0.40 - 0.45

Innovation is significantly smaller than implied by Pb and R (a residual bias in d would
make Jmin too large).

- Assimilation without satellite observations (p = 2 - 3 105)

2Jmin /p  =  1. - 1.05

Similar results obtained at other NWP centres (C. Fischer, W. Sadiki with Aladin model, T. Payne
at Meteorological Office, UK).

Probable explanation: error variance of satellite observations overestimated in order to
compensate for ignored spatial correlation.
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Informative content

Objective function
J(ξ)  =  Σk  Jk(ξ)

where

Jk(ξ)  ≡  (1/2) (Hkξ - yk)T Sk
-1 (Hkξ - yk)

with dimyk = mk

Accuracy of analysis
        Pa = (Γ T S-1Γ)-1

[Pa]-1  =   Σk  Hk
T Sk

-1 Hk

1 =   (1/n) Σk  tr(Pa Hk
T Sk

-1 Hk)
         =   (1/n) Σk  tr(Sk

–1/2 Hk Pa Hk
T Sk

–1/2)
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Informative content (continuation 1)

(1/n) Σk  tr(Sk
–1/2 Hk Pa Hk

T Sk
–1/2) = 1

I(yk) ≡ (1/n) tr(Sk
–1/2 Hk Pa Hk

T Sk
–1/2) is a measure of the relative contribution of subset of data yk to

overall accuracy of assimilation. Invariant in linear change of coordinates in data space ⇒ valid
for any subset of data.

In particular

I(xb) = (1/n) tr[Pa (Pb)-1]  = 1 - (1/n) tr(KH)
       I(y) = (1/n) tr(KH)

Rodgers, 2000, calls those quantities Degrees of Freedom for Signal, or for Noise, depending on whether considered
subset belongs to ‘observations’ or ‘background’.

See also papers by C. Cardinali, M. Fisher and others.



Informative content of subsets of observations (Arpège Assimilation System, Météo-France)

Chapnik et al. ,  2006, QJRMS,  132,  543-565



39Informative content per individual (scalar) observation (courtesy B. Chapnik)
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Objective function
J(ξ)  =  Σk  Jk(ξ)

where
Jk(ξ)  ≡  (1/2) (Hkξ - yk)T Sk

-1 (Hkξ - yk)
with dimyk = mk

For a perfectly consistent system

E[Jk(xa)]  =   (1/2) [mk   -  tr(Sk
–1/2 Hk Pa Hk

T Sk
–1/2)]

(in particular, E(Jmin)  =  p/2)

For same vector dimension mk, more informative data subsets lead at the minimum to smaller terms in
the objective function.
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Equality

E[Jk(xa)]  =   (1/2) [mk   -  tr(Sk
–1/2 Hk Pa Hk

T Sk
–1/2)] (1)

can be objectively checked.

Chapnik et al. (2004, 2005). Multiply each observation error covariance matrix Sk by a coefficient αk
such that (1) is verified simultaneously for all observation types.

System of equations fot the αk‘s solved iteratively.
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Chapnik et al., 2006,
QJRMS, 132,
543-565



43

Informative content (continuation 2)

I(yk) ≡ (1/n) tr(Sk
–1/2 Hk Pa Hk

T Sk
–1/2)

Two subsets of data z1 and z2

If errors affecting z1 and z2 are uncorrelated, then I(z1 ∪ z2)  =  I(z1) + I(z2)

If errors are correlated I(z1 ∪ z2)  I(z1) + I(z2)



44

Informative content (continuation 3)

Example 1
z1 = x + ζ1

z2 = x + ζ2

Errors ζ1 and ζ2 assumed to centred, to have same variance and correlation
coefficient  c.

I(z1)  =   I(z2)  =  (1/2) (1 + c)

More generally, two sets of data z1 and z2 can be said to be positively correlated if I(z1
∪ z2)  <  I(z1) + I(z2), and negatively correlated if I(z1 ∪ z2)  >  I(z1) + I(z2).
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Informative content (continuation 4)

Example 2

State vector x evolving in time according to

x2  =  α x1

Observations are performed at times 1 and 2. Observation errors are assumed centred, uncorrelated
and with same variance σ2. Information contents are then in ratio (1, α2). For an unstable system
(α >1), later observation contains more information (and the opposite for  a stable system).

If model error is present, viz.

x2  =  α x1 + η

η uncorrelated with observation errors, E(η2) = βσ2, then informative contents in observation at
time 1, observation at time 2 and in model are in the proportion (1+β, α2+β, 1+α2).
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Informative content (continuation 5)

Subset u1 of analyzed fields, dimu1 = n1. Define relative contribution of subset yk of data to
accuracy of u1?

u2 : component of x orthogonal to u1 with respect to Mahalanobis norm associated with Pa

(analysis errors on u1 and u2 are uncorrelated).

x = (u1
T, u2

T)T. In basis (u1, u2)
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Informative content (continuation 6)

Observation operator Hk decomposes into

Hk  =  (Hk1, Hk2)

and expression of estimation error covariance matrix into

[Pa
1]-1  =   Σk  Hk1

T Sk
-1 Hk1

[Pa
2]-1  =   Σk  Hk2

T Sk
-1 Hk2

Same development as before shows that the quantity

(1/n1) tr(Sk
–1/2 Hk1 Pa

1
 Hk1

T Sk
–1/2)

is a measure of the relative contribution of subset yk of data to analysis of subset u1 of state vector.

But can it be computed in practice for large dimension systems (requires the explicit decomposition
x = (u1

T, u2
T)T) ?
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If we accept to systematically describe uncertainty by probability distributions (see, e.
g., Jaynes, 2007), then assimilation can be stated as a problem in bayesian
estimation

Determine the conditional probability distribution for the state of the system,
knowing everything that is known

(unambiguously defined if a prior probability distribution is defined; see Tarantola, 2005).
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Questions are now

 Is it possible to objectively evaluate whether the system
achieves bayesian estimation ?

 Is it possible to objectively determine the probability
distributions which describe the uncertainty on the data ?
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‘Bayesianity’ of estimation. Conditional probability distribution
that it sought is meant to describe our uncertainty on the state
of the system. As such, it depends on elements (such as our
present state of knowledge of the physical laws that govern
the system) that cannot influence whatever we can observe.
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Evaluation of assimilation ensembles

Ensembles must be evaluated as descriptors of probability distributions (and not for instance on the basis
of properties of individual elements). This implies, among others

- Validation of the expectation of the ensembles

- Validation of the spread (spread-skill relationship)

Reduced Centred Random Variable (RCRV, Candille et al., 2006)

For some scalar variable x, ensemble has mean µ and standard deviation σ. Ratio

where ξ is verifying observation. Over a large number of realizations

E(s) = 0         ,       E(s2) = 1
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van Leeuwen, 2003, Mon. Wea. Rev., 131, 2071-208
(see also presentation by P. Houtekamer)



Descamps and Talagrand, Mon. Wea. Rev., 2007
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Two properties make the value of an ensemble estimation system (either for assimilation or for prediction)

Reliability is statistical consistency between estimated probability distributions and verifying
observations. Is objectively and quantitatively measured by a number of standard diagnostics (among
which Reduced Centred Random Variable and Rank Histograms, reliability component of Brier and Brier-
like scores).

Resolution (aka sharpness) is the property that reliably predicted probability distributions are useful
(essentially have small spread). Also measured by a number of standard diagnostics (resolution
component of Brier and Brier-like scores).

.
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Size of Ensembles ?

o Observed fact : in ensemble prediction, present scores saturate for value of
ensemble size N in the range 30-50, independently of quality of score.
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Impact of ensemble size on Brier Skill Score
ECMWF, event T850 > Tc Northern Hemisphere
(Talagrand et al., ECMWF, 1999)

Theoretical estimate (raw Brier score)
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Question. Why do scores saturate so rapidly ?

Numerical stability of ensemble assimilation, especially of particle filters, seems
to require much larger ensembles (N ≈100-200) (presentation by M. Bocquet)

What must determine the size of assimilation ensembles ?
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Conclusions

 Absolute evaluation of analysis schemes, and comparison between different schemes

Accuracy can be evaluated only against independent unbiased data (independence and
unbiasedness cannot be objectively checked). Fundamental, but not much to say.

 Determination of required statistics

Impossible to achieve in a purely objective way. Will always require physical knowledge,
educated guess, interaction with instrumentalists and modelers, and the like.

Inconsistencies in specification of statistics can be objectively diagnosed, and can help in
improving assimilation.

For given error statistics, possible to quantify relative contribution of each subset of data to
analysis of each subset of state vector.

        (and also Generalized Cross-Validation, Adaptive Filtering)

 Ensemble Assimilation

Specific diagnostics are required, which seem  to saturate rapidly with ensemble size.
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Optimality

Equation

xa = xb - E(ζbdT) [E(ddT)]-1 (y - Hxb)

means that estimation error x -xa is uncorrelated with innovation y - Hxb (if it was not, it would be
possible to improve on xa by statistical linear estimation).

Independent unbiased observation

v  =  Cx + γ

Fit to analysis  v - Cxa =  C(x - xa) + γ

E[(v - Cxa) dT] = CE[(x - xa) dT] + E(γ dT)

First term is 0 if analysis is optimal, second is 0 if observation v is independent from previous data.

Daley (1992)


