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 Vertical velocity at 5km (colored) and surface cold pool (black lines, every 2K) 

Observations: radial velocity Vr only, available every 5 minutes where reflectivity dBZ>12 

(Snyder and Zhang 2003; Zhang, Snyder and Sun 2004; Dowell et al. 2004; all in MWR) 

First Test of EnKF for LAMs: Assimilation of 
Radar Observations of Supercells 

Truth 

EnKF 

Also refer to comparison with 4DVAR in Supercell OSSEs: Caya, Sun and Snyder  (2005, MWR) 



Regional-scale EnKF: OSSE Results 
(Zhang, Meng and Aksoy 2006 MWR; Meng and Zhang 2007 MWR)  

• Case in study: the “surprise” snowstorm of 24-26 January 2000 (ZSR2002, 2003) 

• Forecast model: MM5, 30-km grid spacing over CONUS domain (190x120xL27) 

• A 40-member ensemble: initiated at 00Z 24 Jan with random but balanced 

perturbations using MM5 3Dvar background error statistics (Barker et al. 2004) 

• Perfect-model OSSE: truth as one of the ensemble members; no model error  

• OBS type: sounding obs of u, v, T from truth run at (300 km)2 spacing, every 12h 

surface obs of u, v, T from truth run at (60 km)2 spacing, every 3h 

• OBS error: 1 K for T and 2 m/s for u&v; uncorrelated 

• Square-root sequential EnKF: Whitaker and Hamill (2002) 

• Radius of influence: 1800 km with Gaspari and Cohn (1999) cutoff 

• Covariance inflation: relaxation to prior (Zhang, Snyder and Sun 2004, MWR) 
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Performance: Forecast Error (above) vs. Analysis Error (below)  

RMS error of difference total energy (every 2m/s);       



EnKF Performance: Time Evolution of EnKF Analysis Error 

(solid) vs. Forecast Error (dotted) and ensemble spread (gray) 



EnKF Performance: Spectral Analysis of Forecast Error (dotted) vs. 

Analysis Error (solid) at 0h (green), 12h (red), 24h (blue) and 36h (black) 



Imperfect model OSSEs: benefit of multi-scheme ensemble 

     Cumulus Scheme in truth: GR; single wrong scheme: KF;             

Scheme used for multi-physics ensemble:  KF2, KF, BM, KUO 

Perfect-model ensemble 

Multi-scheme ensemble 

KF-scheme ensemble 

KF reference forecast 

difference from GR truth  

Multi-scheme has smaller analysis error than that of imperfect single schemes 

(Meng and Zhang 2007 MWR) 
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Imperfect model OSSEs: why multi-scheme ensemble?  

Single-scheme 

Multi-scheme 

Ensemble spread 

Multi-scheme 

Single-scheme 

Multi-scheme has a better prior forecast 

Multi-scheme is less vulnerable to filter 

divergence due to larger ensemble spread 

Multi-scheme has a better background 

error covariance structure 

Exchange covariance between ... 

(Meng and Zhang 2007 MWR) 



WRF/EnKF: 40 multi-physics-scheme ensemble (27 combinations) 

Boundary conditions:  D1 updated by 12 hourly GFS/FNL analyses  

3DVar (Barker et al. 2005): Updated B with May 2003 forecasts via 
NMC method (Parrish and Derber 1992; Xiao and Sun 2007)  

Observations:   Soundings every 12 h QC’d by 3Dvar in D2,      
assuming observational errors of NCEP. 

Verification: against soundings       
at 12-h forecast time and at      standard 
standard pressure levels 

Inflation: covariance relaxation  

(Zhang et al. 2004 MWR) 

(Meng and Zhang 2008a,b MWR) 

Regional-scale Real-data EnKF vs. 3Dvar for Jun’03 

Verification area 

(30km) 

(90km) 
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EnKF vs. 3DVar: WRF/ARW 12h forecast RMSE for Jun’03 
---EnKF       --- 3DVar_WRF 

EnKF performs generally better than WRF 3DVar for the whole month of June 

(Meng and Zhang 2008b MWR) 



---  EnKF       --- 3DVar_WRF    --- WRF 12h fcst from FNL_GFS  

EnKF vs. 3DVar vs. FNL_GFS for June 2003 

EnKF performs even better than FNL_GFS which assimilates many more data including satellite 

FNL_GFS has a generally smaller 12-h forecast error than wrf-3DVar. 

(Meng and Zhang 2008b) 



Vertical Distribution of 12-h Forecast RMSE for June 2003 

---  EnKF       --- 3DVar_WRF 

Wind amplitude (m/s)                    T(K)                                     q (g/kg) 

EnKF performs clearly better than WRF-3DVar in almost every vertical level 

(Meng and Zhang 2008b) 



• EnKF has significantly smaller overall 12-h forecast error than both WRF-3DVar and FNL_GFS.  

• FNL_GFS has smaller overall forecast error than WRF-3DVar.   

Monthly Averaged 12-h-Forecast RM-DTE for June 2003 

(Meng and Zhang 2008b) 



Monthly Averaged Forecast Error at Different Lead times initialized 

from respective analyses (every 12h, 60 samples) 
—FNL_GFS     —EnKF      —3DVar_WRF       

(Meng and Zhang 2008b) 



EnKF/3DVar forecast (1730UTC) vs. BAMEX dropsondes  
Dropsonde time :1604UTC - 1905UTC June 11, black 

Forecast starting from EnKF analysis shows improved MCV structure than that from 3DVar analysis  

700hPa 700hPa 



Vertical error distribution verified against dropsondes  
___  EnKF_s      ___ 3DVar   ___ EnKF_m 

EnKF_m performs better than WRF 3DVar.  

EnKF_m also performs better than EnKF_s especially for T and q.  



MCV case: Impact of background error covariance (3DVar) 

NMC – use a month-long 24h and 12h forecast differences  

ENS – use the statistics of one-time short-term ensemble forecast  

EVO – ENS change with time and thus have some flow-dependence 
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•  3DVar can be improved significantly by using ensemble-mean for state estimation.  

•  Including some flow-dependence in the background error covariance can result in noticeable 

improvement. 



KCRP 

KHGX 

KLCH 

• WRF domains: D1-D2-D3-D4 grid sizes---40.5, 13.5, 4.5, 1.5km (movable)  
– Physics: WSM 6-class microphysics; YSU PBL; Grell-Devenyi CPS 

• EnKF (Meng & Zhang 2008b): except for 30-member w/o multi-scheme ensemble 

      - Initialized at 00Z 12 using 3DVar background uncertainty with FNL analysis; 
GFS forecast used for boundary condition in forecasts  

• Data assimilated: WSR88D Vr at KCRP, KHGX & from KLCH 09Z12 to 12Z 13 Sept 2007; 
Successive covariance localization; obs err 3m/s 

Convective-scale Vr Assimilation for Hurricanes 
(Zhang et al. 2008 MWR, in review) 

D1 

 

(GFS ops run and WRF run from GFS)  

Hurricane Humberto 2007 



Super-Obs: QC and thinning of WSR-88D Vr Obs 

•Define SO position depended on the radial distance 

•Average10 nearest data points in the raw polar scan to create a SO 

•Averaging bin is 5km max radial range and 5° max azimuthally resolution 

•There are at least 4 valid velocity data within an averaging bin. 

•The standard deviation checking of the velocities. 

0.5degree RAW data 0.5degree SO 



Assimilate WSR88D Vr Obs: Number of SOs 

D1 

Super-Ob of KCRP and KHGX at 09Z/12 

Number of Assimilated SOs 

-WRF/EnKF starts assimilating hourly Vr obs of CRP, HGX and LCH WSR88D 

radars from 09Z/12 to 21Z/12 after a 9-h ensemble forecast from GFS/FNL analysis 

-Successive covariance localization with different ROIs for different subset of SOs 
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Successive Covariance Localization (SCL) 

D1 

SCL is designed to assimilate dense observations that contain information about the 

state of the atmosphere at different scales, as is the case for hurricanes 

The method is also designed to reduce computation cost and sampling errors 

Rationale: Assuming larger-scale errors will have larger correlation length scales and 

smaller-scale errors have much smaller correlation length scales, fewer observations 

with larger radii of influence (ROIs) are needed to constrain large-scale errors, and a 

larger number of observations are needed to constrain small-scale errors 

SCL is similar to the successive correction method  (SCM) used in some earlier 

empirical objective analysis schemes (e.g., Barnes 1964), though in the EnKF 

experiment here the same observation will not be used twice 



Successive Covariance Localization (SCL) 

Details for this case 

D1 

CNTL experiments: SCL with different radii of influence (ROIs):  

1200km (1/10 of SOs) characteristic scale for large-scale flow 

400km (3/10 of SOs) for subsynoptic or TC storm scale,  

135km (5/10 of SOs) for mesoscale to convective-scale details 

Another 1/10 of SOs is reserved for verification purpose 

Sensitivity experiments: 

 Fix ROI for all SOs at 1200km and 400km respectively 

 ROI=30dx at different grids for different group of SOs 



CNTL EnKF Analysis vs. KHGX Obs vs. NoDA  
KHGX base Vr  EnKF Analysis Mean Pure EF Mean w/o EnKF 

   

   

   

09Z/12 

18Z/12 

03Z/13 



Forecast initialized with EnKF Assimilating WSR88D Vr

Min SLP Max wind 

WRF single forecasts initialized with EnKF  analysis at 18Z or 21Z September 12 

captures well the rapid TC formation and deepening (red and brown) 

 

MinSLP (hPa) MaxWSP (m/s)



Comparison with WRF/3DVAR Assimilating the Same OBS

Min SLP Max wind 

Without flow-dependent background error covariance, WRF/3DVAR forecast failed to 

develop the storm despite fit to the best-track obs better at 18Z 



Impact of Using SCL vs. fixed ROIs for all SOs

Min SLP Max wind 

Forecasts from CNTL analysis with SCL appears to perform better than using fixed 

ROIs at 1200km or 400km 

Experiment using 30DX at different domains also performs well 



Airborne Doppler Radar Scanning Geometry 



Impacts of Airborne Vr EnKF for Katrina (2005) 

Min SLP (hPa) 

Max 10m WSP (m/s) 
Track 



4.5-km (top, 126h) vs. 1.5-km (bottom, 102h) ensemble fcsts 

MinSLP MaxWSP

4.5-km  

1.5-km  



Towards Real-time Assimilation of 

Airborne Radar Observations with EnKF 

WRF/ARW triply-nested domains for both EnKF analyses and free forecasts: 

 D1:  121x160x40.5km x 35 levels (similar to GFDL coarse domain) 

 D2:  121x160x13.5km x 35 levels 

 D3:  253x253x  4.5km x 35 levels (moving nest in forecast mode) 

 D4:  253x253x  1.5km x 35 levels (moving nest in forecast mode) 

Time performance of standard real-time WRF/ARW forecast initialized with GFS 

 Waiting time for GFS completion: 4.5 h 

 Transfer GFS analysis and forecasts from NCEP to TACC: 0.3 h 

 Initialization of WRF/ARW with GFS using WPS: 0.4 h 

 126-h WRF free forecast with 512 processors: 2.7 h 

 Total time lapse: 7.9 h (3.4 h after GFS completion, 1.5 km is 7 h after) 

Estimated real-time WRF/ARW forecast initialized assimilating airborne Vr data 

 EnKF ensemble initialized with most recent available GFS: no waiting time 

 Quality control and super-observation (SO) of Airborne data per hour: 0.3h 

 Transfer airborne ~3000 SOs from P3 to TACC: 0.2 h 

 EnKF assimilation of 1-h SOs: 0.5 h   

 126-h WRF free forecast with 512 processors: 2.7 h 

 Total time lapse: 3.7 h (1.5-km is 7 h) after Doppler observations taken  

Running on TACC computer Ranger with Number of Cores: 62,976; Total Memory: 123TB 



Realtime Tests of Hurricane Ike (2008) 

SOs Generated/assimilated during P3 mission 

ARW from GFS at 12Z/9; Vr SOs during 21-24Z/09 



Realtime ARW Performance with Vr EnKF 



Summary on Regional-scale EnKF 

• The EnDA systematically outperforms WRF-3DVar for the 

BAMEX month-long experiment and promising for cloud-

resolving hurricane prediction.  

• The better performance of EnDA over 3DVar is possibly due to 

using an ensemble mean for state estimation and its flow-

dependent covariance. 

• EnDA can benefit from using a mutli-scheme ensemble that 

partially accounts for model errors in physical parameterizations. 

This benefit is more pronounced in the thermodynamic variables 

than the wind fields. 

• Covariance inflation by relaxing to prior appears to be effective 

for mesoscales using 30-40 ensemble members. 

• Successive covariance localization appears to be helpful in 

assimilating dense radar obs in multiscale phenomena like 

tropical cyclones. 



Issues Specific to LAM NWP EnKF vs. VAR  


