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Moderador�
Notas de la presentación�
Focus on how computational cost of EnKF alogrithms and discuss how they scale as we move toward every larger computer systems, which now contain in the 10’s of thousands of processors, and will reach hundreds of thousands of cores in the next decade.  I’ll try to make general comparisons with how I would expect 4dvar to scale as I go along, but I fully expect the experts here to correct me if I’m off base.�



EnKF cycle 

1)
 

Run ensemble forecast for each 
ensemble member to get xb

 
for next 

analysis time.
2)

 
Compute Hxb

 
for each ensemble 

member.
3)

 
Given Hxb, xb

 
compute analysis 

increment (using LETKF, EnSRF
 

etc)

Moderador�
Notas de la presentación�
It seems natural to split the EnKF analysis cycle into three steps.  (1) and (2) could be combined into one step, if the forward operator for each ensemble member were computed during the model integration, which may be the way to go in the future (it would reduce the I/O overhead, but otherwise leave the total cost the same).  The “meat” is in step (3), and I’ll spend most of the talk describing the cost of this step for the two algorithms I have experience with.  ß  �



EnKF Cycle (2)

Moderador�
Notas de la presentación�
Schematic representation .  Note that the only step that requires the ensemble members to be communicated is the computation of the increment.  The rest is “embarassingly parallel”. �



Step 1: Background Forecast

•
 

4DVar -
 

a single run of the (high-res) non-
 linear forecast model for each outer loop, 

many runs of (low-res) TLM/adjoint
 

in inner 
loop in sequence.

•
 

EnKF -
 

N simultaneous runs of the non-linear 
forecast model (embarassingly

 
parallel).

•
 

Bottom line -
 

total cost similar, but EnKF
 may scale better.

Moderador�
Notas de la presentación�
Consider the steps in sequence.  Running the background forecast.  In 4Dvar there is only one run – but inside the computation of increment there are additional runs (low res in the inner loop and high res in the outer loop).  In the EnKF there is a straighforward ensemble intetgration requiring no communication between the members, so it should scale linearly as long as the model can scale up to N/K cores (where N is total # of cores and K is ensemble size).  The forecast step for 4DVar is a lot less computation, but nay not parallelize as well if the model doesn’t scale up to N cores.  �



Step 2:  Forward operator

•
 

4DVar -
 

compute full nonlinear Hxb
 

in each 
outer loop.  In each inner loop, use linearized

 H (faster, especially for radiances).
•

 
EnKF -

 
compute full nonlinear Hxb

 
once for 

each ensemble member simultaneously.  
Could use linearized

 
H for ensemble 

perturbations.
•

 
Bottom line -

 
total cost similar, but EnKF

 may be scale better.

Moderador�
Notas de la presentación�
In 4dvar, the full nonlinear operator is done once per outer loop, and the inner loop a linearized H is used.  In the EnKF typically the full nonlinear H is computed once for every ens member, and since just as in the model forecast the ensemble members don’t need to communicate with each other it will scale very well as long as each foeard operator calc can scale up to N/K cores.  For 4dvar,, a single forward operator calculation has to scale over N cores. �



Step 3:  Calculating the increment

•
 

For EnKF, depends on algorithm
–

 
Perturbed obs

 
EnKF

 
(Env. Canada -

 
obs

 processed serially in batches) ?
–

 
Local Ensemble Transform KF (LETKF -

 developed at U. of Md, being tested at JMA 
and NOAA) 

–
 

Serial Ensemble Square-Root Filter (EnSRF
 

-
 NCAR’s

 
DART,  NOAA ESRL, UW real-time 

WRF) 

Moderador�
Notas de la presentación�
There are three implementations current being run for NWP applications.  I’ll discuss in detail the last two, although I expect that most of what I say for the serial square root filter will apply to the Canadian perturbed obs multiple EnKF.  .�



Serial EnSRF algorithm 
Whitaker and Hamill, 2002: MWR, 130, 1913-1924 

Anderson, 2003: MWR, 131, 634-642

Assume ob errors uncorrelated (R diagonal).
Loop over all L obs

 
(m=1,…L). K = Ens. size 

1)
 

Update Nloc

 

‘nearby’
 

state variables with this 
observation. Covariance (PbHT)

 
costs O(K* Nloc

 

)
2)

 
Update Lloc

 

-m
 

‘nearby’
 

observation priors (for 
obs

 
not yet processed) with this observation. 

Covariance (HPbHT)
 

costs O(K*(Lloc

 

-m))

Total cost estimate O(K*L*Nloc
 

) + O(K*L*Lloc
 

)
where Lloc

 

=av. # of ‘nearby’
 

ob priors and
Nloc

 

=av. # of ‘nearby state elements (for each ob).

Moderador�
Notas de la presentación�
Algorithm described in our 2002 paper, Jeff A pointed out that it amounts to a linear regression of the state variable priors on the observation priors
Assuming all the observation errors are uncorrelated, loop over L obs, updated Nloc nearby state variables with this ob (nearby is defined by localization). To avoid recomputing the forward operator using the updated state, the observation priors ((for all obs not yet assimilated) are updated directly. 

Total cost is linear in K and max(L*Nloc, L*Lloc)  �



EnSRF parallel implementation 
Anderson and Collins, 2007: Journal of Atmospheric 

and Oceanic Technology A, 24 1452-1463

•
 

Update subset of model state and 
observation priors on each processor.

•
 

Loop over all obs
 

on each processor -
 get ob priors from processor on which it 

is updated via MPI_Bcast
 

of K values.

Moderador�
Notas de la presentación�
The parallel implementation of the serial EnSRF is described in Anderson and Collins.  Simply put – a subet of model state vars and observation priors are updated on each processor. On each processor, loop over all obs and update the state vars and ob priors assigned to that processor.  Since the observatino for the current ob being assimilated may not reside on that processor, there as an MPI_Bcast of K values required for each observation.  Should scale well as long as the number of state variables and observation priors being updated on each processor is large enough so the work being done is much greater than the cost of the MPI_Bcast (should scale like O(log2(N))).�



LETKF Algorithm

Ob error in local volume is increased as a function of 
distance from red dot, reaching infinity at edge of circle.

Moderador�
Notas de la presentación�
LETKF alogrith.  This slide is lifted from Eugenia’s talk.  The basic idea is to perform the update in a local volume, selecting observations within the volume to update the center of the volume.  Volumes are overlapping, and typically the ob errors are increased smoothly to infinity at the edge of the volume to avoid discontinues.  Update of every grid point can be done independently, as long as all of the ob priors are available (no communication, perfect scaling).�



LETKF cost estimate 
(Szyunogh et al 2008: Tellus, 60A, 113-130)

•
 

Each state variable can be updated 
independently (perfectly parallel, no 
communication needed).  Assume diagonal R.

•
 

Most expensive step is YbR-1YbT, where Y is K x 
Lloc

 

matrix of observation priors. Lloc
 

is average 
number of obs

 
in each local region.

•
 

Cost is O(K2*Lloc
 

*N) vs
 

O(K* L*Nloc
 

) + O(K*L*Lloc
 

) 
for EnSRF

 
(neglecting communication cost)

–
 

For L <= N, EnSRF
 

faster
–

 
For L > K*N, LETKF faster

–
 

For N~L, LETKF is should be about O(K*Llocal

 

/L) 
slower.

Moderador�
Notas de la presentación�
Cost is quadratic in ensemble size, linear in # of obs in each local volume.  
LETKF can be sped up by computing weight matrix on coarser grid, interpolating to analysis grid 

(Yang et al, 2009, QJRMS to appear)
http://www.meto.umd.edu/~ekalnay/YangKalnayHuntBowler_revisedfinal.pdf�



Benchmarks
•

 
Compares only cost of computing increment (no 
I/O, no forward operator).

•
 

2100 km, 1.5 scale height localization, K=64 
ensemble members.  Two cases:
–

 
384x190 (T126) analysis grid, two tracers 
updated. N=23420160,  L=33301.

–
 

128x64 analysis grid, no tracers updated . 
N=449820, L=949352.

•
 

8 core intel
 

cluster, infiniband, mvapich2, intel
 fortran

 
10.1/MKL.

•
 

Load balancing using “Graham’s algorithm”
 

-
 assign each grid pt to processor with least work 

assigned so far.

Moderador�
Notas de la presentación�
Graham (1966) called it “list processing”�



Case 1: N = O(100L)

•
 

LETKF scales 
perfectly, but is 3-

 7 times slower 
than EnSRF.

•
 

EnSRF
 

scales 
better than linear 
(better cache 
coherence when # 
of state vars

 
per 

proc gets small).

Moderador�
Notas de la presentación�
Dots would lie on lines if scaling was linear from smallest processor count to largest.
LETKF scales linearly, but costs about 3-7 times as much (more if calculations done in double precision).
EnSRF scales better than linear between 64 and 256 cores.  Better cache coherency when size of state vector stored on each processor decreases.�



Case 2: N = O(L)

•
 

LETKF scales 
perfectly.

•
 

EnSRF
 

doesn’t 
scale when # of 
variables updated 
on each proc is 
too small.

Moderador�
Notas de la presentación�
Again, LETKF scales perfectly linearly.
EnSRF about 4 times faster on 32 cores, but does not scale (communications overhead dominates as run time gets below a minute or two).
LETKF faster on 512 cores, but both take less than a minute.
�



Cost of running ensemble 
dominates as resolution increases
•

 
Because of CFL condition, cost of running 
model increases by a factor of 8 when 
horizontal resolution doubles.  This affects 
calculation of increment in 4D-Var.

•
 

Calculation of increment in EnKF
 

scales like 
number of grid points, goes up by a factor of 4.

•
 

Even for modest global resolutions (100-200 
km) we find that ensemble forecast step 
dominates computational cost.

•
 

For EnKF
 

model forecast step scales perfectly, 
for 4D-Var it depends on model scaling.



Serial EnSRF
•

 
Loop over observations (yn

 

, n=1..N)
–

 
n’th

 
observation prior (j’th

 
ens

 
member) <yjn

 

>b

 

= H <xj

 

>b,  y’jnb

 

= H x’
j
b, where 

<..> = M-1Σj=1..M (1st moment) or
 

(M-1)-1Σj=1..M (2nd moment)

–
 

Letdn

 

= <
 

y’jnb

 

y’jnb> + Rn

 

,  αn

 

= (1 + {Rn

 

/dn

 

} –1/2 )-1

–
 

For the i’th
 

state variable xij
b

 

= <xij

 

>b

 

+ x’ijb

•
 

Kin

 

= <
 

x’jib
 

y’jnb

 

>/dn

 

Kalman
 

Gain

•
 

<xij

 

>b = <xij

 

>b + Kin

 

(yn

 

- <yjn

 

>b)
 

update mean for i’th
 

state var

•
 

x’ijb
 

= x’ijb
 

-
 

αn

 

Kin

 

y’jnb

 

update perturbations for i’th
 

state var

–
 

For the m’th
 

observation prior (yjm
b, m=n..N)

•
 

Kmn

 

= <
 

y’jmb

 

y’jnb

 

>/dn

 

Kalman
 

Gain

•
 

<yjm

 

>b = <yjm

 

>b + Kmn

 

(yn

 

- <yjn

 

>b) update mean for m’th
 

ob prior

•
 

y’jmb = y’jmb

 

-
 

αn

 

Kmn

 

y’jmb

 

update perturbation for m’th
 

ob prior
–

 
Go to (n+1)th observation (xb

 

now includes info from obs
 

1 to n).
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