
  



  

Overview

1) Monte Carlo methods,
2) Kalman filter equations

a) nonlinear evolution of error statistics,
b) many ways to do the analysis step,
c) imbalance due to localization,

3) many options for the simulation of model error,
4) issues and options for the future.

Blue fonts indicate issues that cannot easily be 
addressed with a single run 4D-Var.

Red fonts are used for issues that pose a 
problem in an EnKF environment.



  

Monte-Carlo methods: a simple view

Set of observations Assimilation cycle 6 hour forecast

Original system:

Short-hand notation:

O F

(black box)

Monte-Carlo method: generate many sets of randomly perturbed
observations to obtain a random sample of forecasts. 
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Result: statistics on forecast error



  

Error sources in the ensemble Kalman filter

N sets of perturbed
observations

 Analysis update 
step

Add random 
system error

N short-range forecasts
with stochastic forcings

to the model.

Use all N analyses for  
the data-assimilation

cycle

Errors in the data-assimilation cycle have several origins:
1) uncertain observations,
2) uncertain error statistics (like assuming that errors are 

independent and have no bias),
3) differences between the forecast model and the atmosphere.

All significant sources of error will have to be sampled.



  In a controlled environment, without tuning any parameters, the EnKF is able to maintain
ensemble statistics that are representative of the ensemble mean error.

A perfect model experiment with the Canadian EnKF



  

A scientific work environment

The EnKF provides a closed coherent framework to deal
with error statistics:

1) estimated error statistics are specified for uncertain 
basic inputs (like the observations),

2) the EnKF will maintain a representative 
ensemble if the specified statistics are realistic,

3) consequently a comparison of innovation statistics 
with the ensemble spread and observational 
uncertainty provides information about the quality of 
the specified error statistics.

Note: current EnKF implementations converge with O(100)
members. Beyond this, other sources of error become 
more important than errors due to the sample size.

The ensemble of analyses can be used to initialize an
ensemble prediction system (EPS).



  

Kalman filter equations
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 (1) analysis increment

(2) Kalman Gain matrix

 (3) analysis error covariance

 (4) evolve error covariances with model dynamics

(5) evolve the best estimate

The  Kalman filter (Kalman 1960; Kalman and Bucy 1961) provides 
``an elegant and comprehensive mathematical description of the data 
assimilation problem'' (Daley 1991).

Assumption: the model and observations have independent errors with no bias.
 
Practical problems (Daley 1991, Ghil and Malanotte-Rizzoli 1991):

i)  the computational cost of the matrix equations (2), (3) and (4),
ii) the model error Q is not well known (Dee, 1995). 

(note that in 4D-Var the model error can be neglected due to a regular
 re-initialization of covariance information).
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Evolution of error covariances with model dynamics

The Extended Kalman Filter EKF (Evensen 1992, Miller et al. 1994, Gauthier et al., 
Bouttier 1994) uses linearized dynamics in the covariance evolution equation.
The neglect of higher moments leads to unbounded error covariance growth
(due to the absence of saturation).

The EnKF (Evensen 1994) uses the nonlinear forecast model to evolve error 
covariances. It uses a Markov Chain Monte Carlo (MCMC) method to solve the 
fundamental Fokker-Planck equations (book on the ensemble Kalman filter by
Evensen 2006). Because the nonlinear forecast model is used error covariances 
do saturate.

Options:  
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  (6) Like the EKF, but non-linear

 (7) Like 4D-Var, but non-linear, permits
time-interpolation

(8) sampling model error using perturbed
models.



  

Time interpolation

With the EnKF we can assimilate all data in a 6-h window, as is
currently done in 4D variational algorithms (Evensen 2006; Hunt
et al. 2004).

●● ● ● ●

●● ● ● ●

 3         4.5      6         7.5      9h

 3         4.5      6         7.5      9h

 digital filter data

data

 analysis
 analysis

To  permit time interpolation, the state vector consists of the five
dotted points:   

x f
t=6h ,H x 

Only the analysis at the central time is used to start
the subsequent integration. Therefore, it is more economical to
use an extended state-vector consisting (Anderson 2001) of: 

x t=3h , x t=4.5h ,x t=6h ,x t=7.5h, x t=9h



  

Many ways to do the analysis step
1: stochastic or deterministic

1) Stochastic: Early EnKF implementations (Houtekamer and Mitchell 1998) used 
sets of randomly perturbed observations as suggested by the Monte Carlo
methodology.

2) Deterministic: Whitaker and Hamill (2002) propose an Ensemble Square Root
Filter (EnSRF) in which observations are not perturbed. Instead, ensemble
background perturbations are combined with the observations using a modified
gain matrix. The modification is such that the appropriate analysis error 
covariances are obtained.

Tippett et al (2003) compare different proposed EnSRF algorithms. 

Lawson and Hansen (2004) show that, in the presence of nonlinear dynamics,
the deterministic filter can lead to pathological non-Gaussian ensemble 
distributions (with one or a few outlying members).

In his book, Evensen proposes the use of random rotations in the EnSRF to 
distribute the ensemble variance among members. 

The issue is unresolved and depends also on other choices for the analysis step.  



  

Many ways to do the analysis step
 2: with or without cross-validation

In the EnKF, when using a single ensemble of N members, the ensemble
members are used both 

1) to determine the gain matrix K and 
2) to determine the quality of the K (from the spread of the ensemble of

analyses).
Doing (1) prior to (2) violates Monte Carlo principles (since the analysis 
system has been modified it is no longer a black box). The result is an 
underestimate of the analysis error (Houtekamer and Mitchell 1998).

As in a cross-validation approach, it is possible to use certain ensemble
members to compute the gain matrix K  and other members to test the quality 
of that gain. In the operational Canadian EnKF, 4 sub-ensembles are used.
To assimilate each group of 24 members, the remaining 72 members are
used. 

It is not evident how to combine determinstic and cross-validation algorithms.
All other groups use a single ensemble approach.  The resulting underestimate 
of the ensemble spread is treated as a model error.



  

Many ways to do the analysis step
3: localization

Due to the small ensemble size O(100), it  is necessary to localize the
impact of observations.

The impact of an observation can be smoothly forced to zero at large 
separation using a Schur product of the ensemble based covariances and
a covariance function with compact support (Hamill et al. 2001 and 
Houtekamer and Mitchell 2001). Sometimes, the vertical location of an 
observation (like a radiance) or a model coordinate (like surface pressure)
is ill defined.

Alternatively one can use a box analysis method as in the LETKF (Local 
ensemble transform Kalman filter, Ott et al. 2004).

The presentation by Tom Hamill gives a complete overview of the various
proposed localization strategies.

Localization is a deviation from the original Kalman filter equations and 
causes imbalance.



  

Imbalance

In practice, permitting imbalance (deviations from the model attractor) in the 
analysis often leads to a higher quality analysis (because the model and the 
atmosphere have different attractors).

Examples:
1) the use of different physical parameterizations for different members
    of an ensemble (e.g: Meng and Zhang with regional models and
    Houtekamer and Mitchell with global models).
2) the use of an unbalanced temperature component in the background

          or model error description (Canadian EnKF, 3D/4D-variational methods).

In the EnKF, the use of localization is the dominant source of imbalance. The
imbalance is an undesirable side effect of localization. The resulting rapid 
oscillations in the surface pressure can be removed using a balancing method 
such as a digital filter finalization. 

Imbalance in 4D systems is the subject of the afternoon session.



  

Model error

It has long been known (Daley 1991, Dee 1995) that a Kalman filter
implementation needs to account for model error in an appropriate
manner to be successful.

Neglecting model error in the EnKF leads to an rms ensemble spread
that is too small by about a factor of two (Houtekamer et al., in print).

Performing an ensemble of 4D-Var assimilation cycles with sets of 
randomly perturbed observations and using a stochastic backscatter 
algorithm similarly leads to an ensemble spread that is too small by 
about a factor of two (Isaksen et al., ECMWF, 2007).

Thus, if our assumptions about the data-assimilation system were
correct, errors would be smaller by about a factor of two.

This raises the question: what is wrong in our current systems and what
can we do about it? 



  

Strategies to account for model error

Within the Monte Carlo framework, there are two main ways to account for
model error:

1) addition of random perturbation fields,
2) using a perturbed model for the model integration.
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t qi, i=1,⋯,N

1) To generate random perturbation fields q, we need knowledge about the
statistical properties of the model error. Examples are: (a) sample
differences from runs with different resolution (Hamill and Whitaker 2005),
(b) import (and adjust) a background matrix from 3D-Var (Canadian 
ensemble).

2) To perturb the model, we need some reasonable hypotheses about the 
weakest components of the model. Examples are: (a) stochastic physics
(Buizza et al. 1999), (b) Stochastic Kinetic Energy Backscatter (Shutts 2005),
(c) using different physical parameterizations (Meng and Zhang 2007). 



  

Model error that is (not) clearly due to the model

Uncertainty in the 
model physics explains
a sizable fraction of
the model error in the
lower atmosphere only.

In the upper atmosphere,
the isotropic component
dominates. It has been
obtained from 3D-Var 
and subsequent tuning.

i.e: we don't know the
origin of most of the 
model error.



  

The impact of model error simulation 

Basic: EnKF with real 
observations and assuming 
that the model is perfect.
 
Operational: as above, but 
adding random perturbations 
(from Q) and using different 
physical parameterizations for 
different members.

Simulation of model error 
dramatically improves 
results.

For a representative ensemble: O−P f 2=H P f H TR

Radiosonde observations have been used to verify this equation.



  

Summary of the simulation of model error

To maintain reasonable ensemble statistics, we need to add a model
error term of significant amplitude.

We do not know the cause of the model error. Uncertainty in the model
physics can only explain a certain fraction.

Reduction of the unexplained model error appears most important for the 
upper atmosphere (above about 300 hPa).

See the talk by Eugenia Kalnay for an overview of methods to account
for model error in the ensemble Kalman filter. 



  

Computational aspects.

Most EnKF studies use N_ensemble ~ 100. Amazingly, it has not been 
necessary to increase the ensemble size as more observations and 
higher resolution models started to be used (both N_obs and N_model
increased by orders of magnitude between 1998 and 2008). Horizontal 
and vertical localization have been sufficient so far. 

Can we continue along the same lines or will we need to significantly 
increase the ensemble size as we want to have small-scale details in 
global analyses?

Most  proposed EnKF algorithms scale as 
O(N_obs x N_model x N_ensemble).

Will we need to move to variational analysis algorithms when N_obs
becomes very large or can we use more severe localization?
examples: (1) Zupanski, 2004, Maximum Likelihood Ensemble Filter,

(2) Hamill and Snyder, 2000, Hybrid EnKF-3D-Var.



  

Towards smaller scales

1) A dual-resolution approach (Gao and Xue, 2008, talk by Mark Buehner) 
can be used in which a low-resolution ensemble supports a high-resolution 
analysis (much like in an incremental 4D-Var).

2) As the resolved scales become smaller, it is possible to reduce the 
length of the assimilation window in agreement with the shorter 
predictability limits for these scales (with no loss of information).

3) With the current parameters for the digital filter finalization
the window of the Canadian global EnKF cannot be made shorter than
3 hours. Do we still want to initialize as we move to higher resolution and
if so how should it best be done?



  

Data assimilation with any method is a complex procedure. 

Developing the EnKF towards operational use (1997-2005) in Montreal 
would not have been made possible without:

1) continuous strong support from our managers,
2) the help of our many colleagues in the Meteorological Research

Division (data assimilation, modeling and computing),
3) many ideas developed at other centers (like DAO and NCAR),
4) about 200 experiments with an evolving configuration.

It is hard to predict what the external parameters (like the number and type 
of observations, the quality of the forecast model and the type of computational 
platform) of future data assimilation systems will be and which algorithm 
will be most suitable in such a context.

It is important to proceed in such a way that no critical knowledge 
or experience is lost.  

Complexity 



  

Thank you!

This talk did focus on global atmospheric data assimilation. References
to other application areas can be found in the book by Evensen (2006).

E.g: 
1) ocean data assimilation (Kepenne and Rienecker 2003),
2) hydrologic data assimilation (Reichle et al. 2002),
3) convective scale assimilation (Dowell et al. 2004).
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